How stem cells are regulated

Feb 22, 2007

Researchers from Biotech Research & Innovation Centre (BRIC) at University of Copenhagen have identified a new group of proteins that regulate the function of stem cells. The results are published in the new issue of Cell.

All living organisms, including human beings, consist of a number of specialised cell types that all originate from the same type of primal cell; the embryonic stem cell. Stem cells can develop into any type of cell through a carefully regulated process referred to as cellular differentiation. During differentiation, specific genes are switched on while other genes are switched off. The genes that are activated during differentiation determine which type of cell the stem cell will become. The result is that cells in a particular organ, e.g. a liver, only express genes specific to that organ.

Director of BRIC, Professor Kristian Helin led the research team consisting of Jesper Christensen, Karl Agger and Paul Cloos. Last year, the same research group published an article in Nature on how a group of Jumonji proteins regulate the growth of cancer cells and are involved in the development of specific cancer types.

BRIC’s new results show that a different subgroup of Jumonji proteins is essential for cellular differentiation. The Jumonji enzymes can turn off, or inactivate, particular genes that play an important part in embryogenesis. The conclusions are based on studies of the nematode (roundworm) C. elegans and studies of mouse embryonic stem cells. The C. elegans studies were carried out in collaboration with another of BRIC’s research groups, led by Associate Professor Lisa Salcini.

The BRIC researchers are currently developing inhibitors to the Jumonji proteins. Their aim is to use these inhibitors to treat cancer patients with increased levels of the Jumonji proteins.

Source: University of Copenhagen

Explore further: GMO mosquito plan sparks outcry in Florida

add to favorites email to friend print save as pdf

Related Stories

Growing functioning brain tissue in 3D

Jan 29, 2015

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Recommended for you

GMO mosquito plan sparks outcry in Florida

9 hours ago

A British company's plan to unleash hordes of genetically modified mosquitoes in Florida to reduce the threat of dengue fever and other diseases has sparked an outcry from fearful residents.

Population genomics unveil seahorse domain

Jan 30, 2015

In a finding vital to effective species management, a team including City College of New York biologists has determined that the lined seahorse (Hippocampus erectus) is more a permanent resident of the we ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.