Do you hear what i see?

Feb 20, 2007

New research pinpoints specific areas in sound processing centers in the brains of macaque monkeys that shows enhanced activity when the animals watch a video.

This study confirms a number of recent findings but contradicts classical thinking, in which hearing, taste, touch, sight, and smell are each processed in distinct areas of the brain and only later integrated. The new research, led by Christoph Kayser, PhD, at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, was published in the February 21 issue of The Journal of Neuroscience.

"This study confirms that what we used to call the ‘auditory cortex’ should really be thought of as much more complex in terms of its response properties," says Robert Zatorre, PhD, head of the auditory cognitive neuroscience laboratory at McGill University. "The textbook-standard view of sensory systems as isolated from one another is no longer tenable." Zatorre did not participate in the study.

Kayser’s team used functional magnetic resonance imaging to draw a map of 11 small, tightly packed fields in the monkeys’ auditory cortex that differ by the frequency of sound they process. Scans recorded activity in the monkeys’ brains while they watched a video, with and without sound, and listened separately to the accompanying sound. The researchers found that fields in the hindmost part of the auditory cortex showed activity when the monkeys watched the video without sound, and activity was enhanced when the video was presented simultaneously with the sound.

"This finding suggests that sensory integration, which is so fundamental to complex mental activity, takes place at very early processing stages," says Daniel Tranel, PhD, of the University of Iowa, who is not affiliated with the study. "This knowledge could help scientists pinpoint sources of extraordinary sensory processing, such as creativity and genius, as well as abnormal sensory processing, as seen in schizophrenia."

Kayser notes that the findings also could be used to reveal the role of audio-visual integration in communication or to help pin down where sounds are coming from. "Clearly, our acoustical understanding often improves if we can see the lips of the speaker—for example at a crowded cocktail party," he says. "However, currently it is not clear whether and how audio-visual interactions are specialized for the processing of communication signals. "The present study clearly shows where in the auditory system researchers have to focus."

Source: Society for Neuroscience

Explore further: Researchers find that coronary arteries hold heart-regenerating cells

add to favorites email to friend print save as pdf

Related Stories

Phone snooping via gyroscope to be detailed at Usenix

Aug 15, 2014

Put aside fears of phone microphones and cameras doing eavesdropping mischief for a moment, because there is another sensor that has been flagged. Researchers from Stanford and defense research group at Rafael ...

Scientists study 'talking' turtles in Brazilian Amazon

Aug 14, 2014

Turtles are well known for their longevity and protective shells, but it turns out these reptiles use sound to stick together and care for young, according to the Wildlife Conservation Society and other organizations.

States debate digital currency

Aug 01, 2014

Now that consumers can use digital currencies like bitcoin to buy rugs from Overstock.com, pay for Peruvian pork sandwiches from a food truck in Washington, D.C., and even make donations to political action committees, states ...

Technology tracks the elusive Nightjar

Jul 21, 2014

(Phys.org) —Bioacoustic recorders could provide us with vital additional information to help us protect rare and endangered birds such as the European nightjar, new research has shown.

Recommended for you

Student seeks to improve pneumonia vaccines

4 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

6 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

Aug 19, 2014

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments : 0