Nano Printing Technique Produces Model Membranes

Feb 20, 2007

An international team of investigators based in the United States and Germany has modified the nanoscale printing technique known as dip-pen nanolithography to create large numbers of model cell membranes. This method, published in the journal Small, could open the door to a better understanding of how the cell membrane functions and could lead to new ways of getting therapeutic drugs into cells.

Cell membranes are incredibly complex structures comprising a mixture of fatty molecules known collectively as phospholipids, proteins, and numerous other molecules, including cholesterol. These components hold each other together in a fluid manner –while the overall structure of the cell membrane is durable, the individual molecules in it are relatively free to move around within the confines of the membrane.

Chad Mirkin, Ph.D., and colleagues at Northwestern University, and Steven Lenhert, Ph.D., and his collaborators at the University of Munster in Germany, worked together on this project. Mirkin, who is the principal investigator of the Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence, invented dip-pen nanolithography, which uses an atomic force microscope to place individual molecules onto a surface, such as a glass slide or silicon chip.

In this work, the investigators determined the optimal experimental conditions needed to use phospholipids as “ink” that they could print onto glass slides, polystyrene sheets, or silicon wafers. By carefully controlling the humidity and application rate, the researchers were able to deposit multiple phospholipids in precise patterns. Once deposited onto a substrate, the phospholipids formed a lipid bi-layer characteristic of cell membranes. The investigators note that they should be able to use dip-pen nanolithography to design the type of complex physical and chemical networks of materials that are found in cell membranes.

This work is detailed in a paper titled, “Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns.” Investigators from Forschungszentrum Karlsruhe in Germany also participated in this study. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Direct 'writing' of artificial cell membranes on graphene

Oct 10, 2013

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.