The Cosmic Shredder and the Magnetar

Dec 15, 2005
An artist's impression of the Swift spacecraft with a gamma-ray burst going off in the background. Credit: Spectrum Astro.

No, it is not the title of the next Harry Potter book - but the latest discoveries from NASA's Swift mission which is studying gamma-ray bursts (GRB's) - the most powerful explosions occurring in the Universe. As reported in Nature today, scientists from the UK, USA, Italy and Sweden have witnessed the probable destruction of a neutron star by a black hole.

In a further Nature paper also issued today, astronomers from the University of Hertfordshire have discovered that some of the "short" gamma-ray bursts occur much closer to home than previously thought and could result from the tearing apart of an exotic object called a magnetar.

Every couple of days or so a burst of gamma rays will appear randomly from any direction in the sky. Most of these events last a few tens of seconds. These "long bursts" are thought due to the collapse of a massive star which forms a black hole. Occasionally, however, a much shorter duration event is seen (lasting less than 2 seconds). The origin of these "short bursts" is one of the great unsolved mysteries in astronomy.

Observations made by Swift and other telescopes, including the European Southern Observatory's Very Large Telescope, over the last six months indicate that some short bursts may be due to the merger of two neutron stars - dense cores of dead stars. These can combine after orbiting each other for perhaps hundreds of millions of years to form a black hole which powers a brief flash of gamma-rays. The light from such an event will decay away very quickly. The new observation suggests that another, rarer mechanism may be involved in the formation of some short bursts in which the objects that merge are a black hole and a neutron star.

Dr. Paul O'Brien from the University of Leicester says "This short burst emitted X-rays for over a day after the bright gamma-ray flash had faded. Multiple X-ray flares were also seen. This all suggests a binary system of a black hole and a dense neutron star was involved. The neutron star, around the mass of the Sun, was literally torn apart after coming too close to the black hole. At peak, the total power output was equivalent to about a million, billion Suns."

Professor Andrew King, also from the University of Leicester says "The black hole shredded the neutron star and either swallowed it in chunks or it formed a disc around the black hole which was then accreted. This could be the first ever observation of a black hole-neutron star binary system."

Data from previous missions is not forgotten though - astronomers from the University of Hertfordshire, have made a new and unexpected discovery. By statistically comparing the distribution of the nine years of short-duration bursts detected by the Compton Gamma Ray Observatory with the distribution of galaxies within about 300 million light years of the Milky Way, they conclude that around 15% originate from these relatively nearby galaxies. This is more than ten times closer than previously thought. A report of this work also appears in Nature this week.

These nearby short bursts, could, like their more distant brethren, result from catastrophic collisions of neutron stars, but if so then their outbursts must be much weaker. Alternatively, they could be a fundamentally different kind of explosion. A prime candidate would be an exotic object called a magnetar, a lone neutron star with a magnetic field 100,000 billion times that of the Earth, tearing itself apart due to enormous magnetic stresses.

An example of such an explosion was seen a year ago coming from a magnetar in our own galaxy, the Milky Way, so it seems reasonable to expect they should occur occasionally in other galaxies too, said Dr Nial Tanvir from the University of Hertfordshire. If so, they would look very much like short-duration gamma-ray bursts. He continues, "Although we still don't know for sure what produces the short duration gamma-ray bursts, this is a crucial breakthrough in astronomy as knowing where a phenomenon occurs is often the first step towards understanding it."

Since its launch on 20 November 2004, Swift has observed over 100 GRB's. Swift's power lies in its ability to detect a fast-fading burst and then turn autonomously to point sensitive telescopes at the burst before it has faded. Dr. Julian Osborne, Lead Investigator for Swift at the University of Leicester says "Swift is unique in being able to observe the fading X-ray light from a GRB so quickly after the gamma-ray flash. The accurately determined position in this case was sent to observers on the ground who found the host galaxy for the burst within a few hours. This particular burst occurred four billion light years from Earth."

Source: PPARC

Explore further: Planck: Gravitational waves remain elusive

add to favorites email to friend print save as pdf

Related Stories

Snapshot of cosmic burst of radio waves

Jan 19, 2015

A strange phenomenon has been observed by astronomers right as it was happening - a 'fast radio burst'. The eruption is described as an extremely short, sharp flash of radio waves from an unknown source in ...

Novel vision of the death of massive stars

Jan 08, 2015

An international consortium, in which the University of the Basque Country (UPV/EHU), Ikerbasque and CSIC are participating, has published in a single article a compendium of data obtained after the simultaneous ...

Birth of black hole kills the radio star

Dec 20, 2013

Astronomers led by a Curtin University researcher have discovered a new population of exploding stars that "switch off" their radio transmissions before collapsing into a Black Hole.

Recommended for you

Planck: Gravitational waves remain elusive

7 hours ago

Despite earlier reports of a possible detection, a joint analysis of data from ESA's Planck satellite and the ground-based BICEP2 and Keck Array experiments has found no conclusive evidence of primordial ...

Going a long way to do a quick data collection

13 hours ago

Like many a scientist before me, I have spent this week trying to grow a crystal. I wasn't fussy, it didn't have to be a single crystal – a smush of something would have done – just as long as it had ...

How are planets formed?

13 hours ago

How did the Solar System's planets come to be? The leading theory is something known as the "protoplanet hypothesis", which essentially says that very small objects stuck to each other and grew bigger and ...

What's happening in the universe right now?

14 hours ago

There are some topics that get a little frustrating in their pedantry, but can really draw attention to the grand scope and mechanics in our Universe. This is definitely one of them.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.