Nanoscale packaging could aid delivery of cancer-fighting drugs

Feb 15, 2007

Nature has produced a well-stocked arsenal of potent cancer-fighting compounds, including Taxol, first isolated from the Pacific yew tree, and rapamycin, borrowed from a soil-dwelling bacterium.

But there's a catch. Many natural anti-cancer molecules are large, complex and fat-soluble, making them tough to administer to patients and keep circulating in the blood long enough to attack their targets.

Working in the emerging field of "nanomedicine," University of Wisconsin-Madison pharmacy professor Glen Kwon aims to improve the delivery of drugs like these by targeting them more selectively to tumors and boosting their solubility in water. Standard formulations exist but involve dissolving drugs in organic solvents like ethanol or with soap-like molecules called surfactants.

"Think about surfactant or soap being injected into a patient," says Kwon. "But we do that for a lot of anti-cancer drugs, although we are getting more sophisticated."

Kwon instead coaxes water-insoluble drugs inside nanoscale spheres, called polymeric micelles, which can circulate in the bloodstream for long periods. Like soap, the polymers composing his micelles contain a "hydrophobic" region that repels water and a "hydrophilic" region that attracts it. In water, the polymers spontaneously assemble into tiny spheres, each with a hydrophobic center and a hydrophilic outer shell.

Soap dissolves grease in water by bringing oil and fat inside the core of its micelles. Kwon's approach works the same way: When mixed with a fat-soluble drug, polymeric micelles convey the compound inside. Enveloped by the micelle's hydrated outer shell, the drug then becomes much more water-soluble than it would be normally.

Unlike soap, however, Kwon's micelles are composed of benign and biocompatible polymers, including a biodegradable compound that is already used for long-term release in birth control.

Besides being safer and easier to administer, polymeric micelles maintain anti-cancer drugs like rapamycin in blood plasma for longer periods than do standard formulations, Kwon has found. It's a promising result that could give the drugs a greater chance of accumulating at tumor sites.

Polymeric micelles may also make it easier to mix stronger cancer-fighting cocktails containing more than one chemotherapeutic agent. Doing so now is a challenge because hydrophobic drugs in solution together tend to "crash out," says Kwon, becoming particulate, aggregated — and useless.

"We've set the stage for concurrent, combination drug therapy," he says. "These are all drugs that are proven already, but from a delivery point of view we think we can make an improvement."

Source: by Madeline Fisher, University of Wisconsin-Madison

Explore further: Molecular beacons shine light on how cells 'crawl'

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

10 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

11 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Atomic trigger shatters mystery of how glass deforms

12 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

US company sells out of Ebola toys

20 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

Recommended for you

Molecular beacons shine light on how cells 'crawl'

15 hours ago

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0