Hidden gems: New composites are stiffer than diamond

Feb 15, 2007

Using a unique combination of barium titanate and tin, University of Wisconsin-Madison researchers have made the first known material that's stiffer than diamond. The group published its results in the Feb. 2 issue of Science.

Aside from its value as a gemstone, diamond has the highest thermal conductivity and is the stiffest, hardest material around. Yet despite its benefits, diamond is too expensive to consider in such structural applications as bridges, buildings, airplanes or golf clubs.

While diamond achieves its rock-solid stability via dense, directional, extremely tight atomic bonds, the UW-Madison researchers created their stiff composite from ordinary materials held together in an extraordinary way, says Roderic Lakes, a professor of engineering physics. "We're using a material now that's chosen for having the ability to change volume during phase transformation," he says. "The material we chose-barium titanate-goes from one solid to another solid."

Barium titanate is a well researched crystalline material previously used in such applications as microphones or cell phone speakers. Embed bits of it in a tin matrix, and the phase transformation, or shift in the arrangement of atoms, is held back, creating stored energy. "Imagine water getting into cracks in the road and freezing," says Lakes. "It can't expand because it's held in place."

The blocked phase transformation creates negative stiffness, or instability, within the barium titanate, while the tin has positive stiffness, or stability. "We've finally showed that in the lab, you can make a composite that's stiffer than either constituent, which nobody thought was possible before, because in all of the previous composites both constituents are in a minimum energy state," he says. "There's no stored energy, and both stiffness values are positive."

In laboratory experiments, Lakes and his collaborators showed that if they embed the barium titanate within the tin, the resulting composite material achieves stiffness approaching 10 times that of diamond. "You'd think that if you'd add positive and negative, you'd get zero," says Lakes. "Actually, that's exactly how you get the extreme stiffness, because you're adding compliances."

For example, he says, steel is very stiff; rubber is very compliant. A positive compliance is the inverse of a stiffness and a negative compliance is the inverse of a stiffness. Add positive compliance and negative compliance and the sum is close to zero-which corresponds to very high stiffness.

Like the phase transformation of water to ice at 0 degrees Celsius, the barium titanate phase transformation also is governed by temperature, so the current composite exhibits extreme stiffness within a temperature range of less than 10 degrees. "The temperature at which this material works is like a hot day in Libya," says Lakes. "So it's like 65 degrees Celsius, and a hot day in New York is 40 Celsius. It's a higher temperature than is convenient. We think we can tune that, but that's the future."

Source: University of Wisconsin-Madison, by Renee Meiller

Explore further: Atomic trigger shatters mystery of how glass deforms

add to favorites email to friend print save as pdf

Related Stories

'Red effect' sparks interest in female monkeys

37 minutes ago

Recent studies showed that the color red tends increase our attraction toward others, feelings of jealousy, and even reaction times. Now, new research shows that female monkeys also respond to the color red, ...

Tailored 'activity coaching' by smartphone

2 hours ago

Today's smartphone user can obtain a lot of data about his or her health, thanks to built-in or separate sensors. Researcher Harm op den Akker of the University of Twente (CTIT Institute) now takes this health ...

Recommended for you

1980s aircraft helps quantum technology take flight

54 minutes ago

What does a 1980s experimental aircraft have to do with state-of-the art quantum technology? Lots, as shown by new research from the Quantum Control Laboratory at the University of Sydney, and published in Nature Physics today. ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

User comments : 0