Strain Has Major Effect on High-Temp Superconductors

Feb 15, 2007
Strain Has Major Effect on High-Temp Superconductors
Magneto-optical image of magnetic fields within a YBCO superconductor showing electrically connected grains (yellow) and grain boundaries (green) that form barriers to superconducting currents. The large reversible effect of strain observed by NIST might be due to associated changes in grain boundaries, which raise the barriers to current flow and lower the material´s current-carrying capability. Credit: D.C. van der Laan/NIST

Just a little mechanical strain can cause a large drop in the maximum current carried by high-temperature superconductors, according to novel measurements carried out by the National Institute of Standards and Technology.

The effect, which is reversible, adds a new dimension to designing superconducting systems—particularly for electric power applications—and it also provides a new tool that will help scientists probe the fundamental mechanism behind why these materials carry current with no resistance.

The measurements, reported in Applied Physics Letters, revealed a 40 percent reduction in critical current, the point at which superconductivity breaks down, at just 1 percent compressive strain. This effect can be readily accommodated in the engineering design of practical applications, NIST project leader Jack Ekin says, but knowing about it ahead of time will be important to the success of many large-scale devices. The effect was measured in three types of yttrium-barium-copper-oxide (YBCO), a brittle ceramic considered the best prospect for making low-cost, high-current, superconducting wires.

The researchers developed a “four point” bend technique that enables studies of superconducting properties over a wide range of uniform strain at high current levels. The superconductor is soldered on top of a flexible metal beam, which is then bent up or down at both ends while the critical current is measured.

The discovery is the first major reversible strain effect found in practical high-temperature superconductors, which generally have been tested under smaller tensile strains only, or at strains so high they caused the material to break down permanently. The newly discovered effect is totally reversible and symmetric for both compressive and tensile (pushing and pulling) strains, suggesting it is intrinsic to the fundamental mechanism of superconductivity in YBCO.

The NIST team is now pursuing the possibility of using the effect as a new tool for probing the elusive mechanism underlying high-temperature superconductivity. The next step is to investigate how magnetic fields affect the strain effect, and several collaborations are under way with universities and other research organizations to study the interplay of the effect with other factors affecting high-temperature superconductivity. The research described in the new paper was supported in part by the U.S. Department of Energy.

Citation: D.C. van der Laan and J.W. Ekin. Large intrinsic effect of axial strain on the critical current of high-temperature superconductors for electric power applications. Applied Physics Letters, 90, 052506, 2006. Posted online Jan. 31.

Source: NIST

Explore further: Better thermal-imaging lens from waste sulfur

add to favorites email to friend print save as pdf

Related Stories

Nano scale, mega scope

Mar 31, 2014

Research in China has shown that a common hybrid circuit component has potential for use as a micro-actuator. The industrial grade MLCCs tested display surprisingly little hysteresis, suggesting they could ...

Physicists propose explanation for metals behaving badly

Mar 28, 2014

(Phys.org) —One of the defining properties of metals is that, the hotter the metal, the worse it conducts electricity. But while most metals obey this inverse relationship between temperature and conductivity ...

Recommended for you

Better thermal-imaging lens from waste sulfur

3 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...