Neuroscientists explain inner workings of critical pain pathway

Feb 15, 2007

Whether they're fighting postoperative soreness or relieving chronic discomfort from conditions such as cancer, morphine and other opioids are powerful weapons against pain. Now, in research published online in Nature Neuroscience, Brown University scientists give one reason why these painkillers work so well.

The secret: They act on a special form of N-type calcium channel, the cellular gatekeepers that help control pain messages passed between nerve cells. By blocking these channels, pain signals are inhibited. These findings not only shed important light on how the body controls pain, they could be a boon to drug development.

"We've known that drugs such as morphine are highly effective at blocking calcium channels, but we've never known precisely why – until now," said Brown neuroscientist Diane Lipscombe, who led the research. "With this new understanding of how opioids work on calcium channels, drug companies could develop effective new painkillers."

Lipscombe, a professor in the Department of Neuroscience, is an expert in N-type calcium channels, critical players in the pain pathway. At the synapse – the point of connection between nerve cells – N-type channels control the release of neurotransmitters. These chemicals carry messages between nerve cells – messages that include sensations of pain. So if you block N-type channels, you can block pain.

But all of these channels shouldn't be closed, Lipscombe explained. That's because some pain signals – "That stove is hot!" – are needed to survive. "You don't want to shut off all pain signals," she said. "You just want to dampen some of them down."

In 2004, Lipscombe and her colleagues discovered a unique form of the N-type channel in nociceptors, neurons that carry pain signals to the spinal cord. These are the channels that opioids act on. But what makes the channels in nociceptors so special?

In their new work, Lipscombe and her team uncover the answer. All N-type channels are made up of a string of about 2,400 amino acids. In nociceptor N-type channels, that string differs by a mere 14 amino acids, Lipscombe and her team learned. This small difference in molecular make-up makes these channels much more sensitive to the pain-blocking action of opioids.

"In nociceptor N-type channels, you get double-barreled inhibitory action," she explained.

Source: Brown University

Explore further: Letrozole is a promising new treatment of male infertility, researcher says

add to favorites email to friend print save as pdf

Related Stories

Evolving robot brains

9 hours ago

Researchers are using the principles of Darwinian evolution to develop robot brains that can navigate mazes, identify and catch falling objects, and work as a group to determine in which order they should ...

Facebook fends off telecom firms' complaints

9 hours ago

Facebook founder Mark Zuckerberg fended off complaints on Monday that the hugely popular social network was getting a free ride out of telecom operators who host its service on smartphones.

Scientists find clues to cancer drug failure

9 hours ago

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Glass coating improves battery performance

10 hours ago

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

Recommended for you

Popular antioxidant likely ineffective, study finds

6 hours ago

The popular dietary supplement ubiquinone, also known as Coenzyme Q10, is widely believed to function as an antioxidant, protecting cells against damage from free radicals. But a new study by scientists at McGill University ...

New findings on 'key players' in brain inflammation

6 hours ago

Inflammation is the immune system's natural reaction to an 'aggressor' in the body or an injury, but if the inflammatory response is too strong it becomes harmful. For example, inflammation in the brain occurs ...

Gut microbial mix relates to stages of blood sugar control

Mar 05, 2015

The composition of intestinal bacteria and other micro-organisms—called the gut microbiota—changes over time in unhealthy ways in black men who are prediabetic, a new study finds. The results will be presented Friday ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.