The Moon is a School for Exploration

Feb 15, 2007
The Moon is a School for Exploration
Human-robotic teleprescence, an artist's concept. Credit: Pat Rawlings and NASA.

NASA has been exploring space for nearly half a century, often with stupendous success. Yet "there's one thing we really don't know: what is the best way to explore a planet?" declares Paul D. Spudis, a senior planetary scientist at Johns Hopkins University’s Applied Physics Laboratory in Laurel, Maryland.

Discovering the most effective techniques for exploring a planet is itself cutting-edge research—just as discovering the most effective mining technologies or the best ways of surviving and making machinery work in Antarctica are pioneering research.

Thus, for the same reasons that nations have founded university-level schools of mines and the U.S. Army founded its own Cold Regions Research and Engineering Laboratory, NASA wants to use the Moon as a graduate school for exploration.

On the Moon, astronauts can develop and test techniques for building habitats, harvesting resources and operating machinery in low gravity, high vacuum, harsh radiation, pervasive dust and fantastic extremes of temperature—an environment whose prolonged combination is simply impossible to duplicate on Earth. What they learn will be useful not only on the Moon, but also essential for preparations in going to Mars.

One research project topping the curriculum: What is the best combination of humans and robots? Unmanned orbiting spacecraft and rovers have returned millions of gigabytes of high-quality data from the Moon and planets, revolutionizing our understanding of the solar system. But for geological field work, says Spudis, nothing can replace a trained geologist with a rock hammer, experienced eyes, and the knowledge to "understand rocks in the context of their environment."

For that reason, NASA wants to explore how best to blend humans and machines. One promising technology is telepresence, similar to what's now used in hospital operating rooms for certain types of surgery. From the safety of a radiation-shielded underground lunar habitat, a geologist's movements could be "instantly mirrored by a robot on the surface, complete with instant sensory feedback much as an astronaut has through the gloves of a space suit," Spudis explains. Is that the best way, though? In some circumstances, a robot on its own making lightning-fast decisions with artificial intelligence might do a better job. Again, it's a question best answered by on-site research.

Other crucial things humans could learn from lunar experience is how to "make useful things from dirt," Spudis says. On the Moon and Mars, local resources are going to be crucial to astronauts who cannot remain wholly dependent on Earth for supplies. "Aside from solar power, we've never used space resources for any mission," Spudis says, "so we need to understand [how to do it]."

The official NASA acronym for living off the land is ISRU, for In-Situ Resource Utilization. ISRU is basically figuring out how to dig into the surface of another planet, how to get the alien dirt to funnel down a hopper in low gravity (a surprisingly tricky problem), and how to crack and heat the soil to extract valuable liquids and gases—all with high reliability and few mechanical problems.

What's in the lunar regolith that astronauts might need or want to mine? Most immediately useful are oxygen and hydrogen. "From those two elements, we can generate electricity using fuel cells, which make drinkable water as a by-product," Spudis explains. "Hydrogen and oxygen are also rocket propellant. The oxygen astronauts can breathe."

Good news: Oxygen on the Moon is abundant. The lunar crust is 40 percent oxygen by mass, and NASA scientists have lots of ideas for how to extract it. Simply heating lunar soil to very high temperature causes gaseous oxygen to emerge. The most efficient techniques remain to be discovered.

Not-so-good news: Hydrogen on the Moon is relatively rare. That's one reason NASA is keen to explore the lunar poles where some 10 billion metric tons of frozen water may exist in permanently shaded craters: "ice is a concentrated form of hydrogen," Spudis notes. Experience gained at the Moon's poles may apply to Mars, where ice is also thought to be mixed with deep soil and rock.

"We need to set up shop on the Moon for one clear and understandable reason," he concludes. "The Moon is a school for exploration."

Source: Science@NASA, by Trudy E. Bell

Explore further: Life on Mars? Implications of a newly discovered mineral-rich structure

add to favorites email to friend print save as pdf

Related Stories

New research casts doubt on the late heavy bombardment

Jan 06, 2012

Was the early solar system bombarded with lots of big impacts? This is a question that has puzzled scientists for over 35 years. And it’s not just an academic one. We know from rocks on Earth that life ...

Down the Lunar Rabbit-hole

Jul 13, 2010

A whole new world came to life for Alice when she followed the White Rabbit down the hole. There was a grinning cat, a Hookah-smoking caterpillar, a Mad Hatter, and much more. It makes you wonder... what's ...

Radar Finds Ice Deposits at Moon's North Pole

Mar 02, 2010

(PhysOrg.com) -- Using data from a NASA radar that flew aboard India's Chandrayaan-1 spacecraft, scientists have detected ice deposits near the moon's north pole. NASA's Mini-SAR instrument, a lightweight, ...

The Moon is a Harsh Witness

Jan 26, 2007

With binoculars, examine the rugged face of the Moon. It is pocked with thousands of impact craters from interplanetary asteroids and comets. Ever wonder why Earth, a much bigger target, apparently has so few ...

Recommended for you

Australian amateur Terry Lovejoy discovers new comet

3 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 0