Googling brain proteins with 3-D goggles

Feb 15, 2007
Googling brain proteins with 3-D goggles
Abundance profiles of four different proteins compiled from 1 millimeter cubes (voxels) in a mouse brain. The boxes correspond to the locations of the voxels in the brain, and the colors represent their relative abundance in each region (from high, red, to low, violet). Credit: Pacific Northwest National Laboratory

The Allen Brain Atlas, a genome-wide map of the mouse brain on the Internet, has been hailed as “Google of the brain.” The atlas now has a companion or the brain’s working molecules, a sort of pop-up book of the proteins, or proteome map, that those genes express.

The protein map is “the first to apply quantitative proteomics to imaging,” said Richard D. Smith, Battelle Fellow at the Department of Energy’s Pacific Northwest National Laboratory, who led the mapping effort with Desmond Smith of UCLA’s David Geffen School of Medicine.

“Proteins are the lead actors, the most important part of the picture,” PNNL’s Smith said. “They are the molecules that do the work of the cells.”

Fine-tuning such proteome maps will enable comparisons of healthy brains with others whose protein portraits look different. Contrasts in location and abundance of proteins may display the earliest detectable stages of Alzheimer’s, Parkinson’s and other neurological diseases. They hope such diseases might be curbed if caught and treated early enough.

The National Institutes of Health-funded study, performed at DOE’s Environmental Molecular Sciences Laboratory on PNNL’s campus, is published in the advance online edition of Genome Research and featured in current Nature online Neuroscience Gateway (www.brainatlas.org). PNNL staff scientists Vladislav A. Petyuk, Wei-Jun Qian and UCLA’s Mark Chin are co-lead authors.

To produce the map, the team characterized center-brain slices as several dozen 1 millimeter cubes, or “voxels,” to “show us where proteins appear in the brain and where they vary in abundance,” PNNL’s Smith said. “We labeled all the proteins so we would have reference points so we know we’re looking at the same protein between different parts of the brain and from one mouse to another.”

Until now, proteomics, which enlists a specially modified instrument called a mass spectrometer for the task of identifying proteins and tallying them, has been akin to flying blind over a lake of proteins. The abundance and protein type could be discerned from a given sample, but “knowing their location and how the abundances change in different cases is important for understanding what they do,” PNNL’s Smith said.

He said that variations in genomic material across the slice, specifically messenger RNA, from the Allen Brain Atlas should be similar to the observed proteome. This turned out to be the case, which helped to validate the new measurements.

“What the Allen Brain Atlas doesn’t tell you is which genes produce proteins and how much of each of them,” he said. Marrying the voxel map with proteomics, researchers were able to generate “quantitative information on close to 1,200 different proteins.”

Source: Pacific Northwest National Laboratory

Explore further: Gamers helping in Ebola research

add to favorites email to friend print save as pdf

Related Stories

Biology made simpler with "clear" tissues

Aug 04, 2014

(Phys.org) —In general, our knowledge of biology—and much of science in general—is limited by our ability to actually see things. Researchers who study developmental problems and disease, in particular, ...

Odor code for food is based on a few volatile substances

Jun 25, 2014

(Phys.org) —The actual flavor of a food is experienced through our sense of smell rather than with our tongue. However, of the large number of volatile compounds in foods, only about 230 are involved in ...

Recommended for you

Gamers helping in Ebola research

6 hours ago

Months before the recent Ebola outbreak erupted in Western Africa, killing more than a thousand people, scientists at the University of Washington's Institute for Protein Design were looking for a way to stop the deadly virus.

Carcinogenic role of a protein in liver decoded

9 hours ago

The human protein EGFR controls cell growth. It has mutated in case of many cancer cells or exists in excessive numbers. For this reason it serves as a point of attack for target-oriented therapies. A study ...

A new way to diagnose malaria, using magnetic fields

Aug 31, 2014

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and ...

User comments : 0