Fragile X protein may play role in Alzheimer’s disease

Feb 14, 2007

A brain afflicted by severe Alzheimer's disease is a sad sight, a wreck of tangled neural connections and organic rubble as the lingering evidence of a fierce internal battle.

A new study has now uncovered an unexpected link between this devastating neural degeneration and a protein whose absence causes a different neurological disease - the inherited mental retardation disorder called fragile X syndrome. In the Feb. 13 issue of the journal Public Library of Science Biology, University of Wisconsin-Madison researchers report that, in mice, the fragile X mental retardation protein may regulate the material responsible for the plaques and cell death seen in the brains of Alzheimer's patients. If similar research can be confirmed in humans, it offers a glimmer of hope for developing a treatment for Alzheimer's disease.

The telltale plaques of Alzheimer's disease contain remnants of dying cells and clumps of a small, sticky scrap of a protein called beta-amyloid. When the gummy protein builds up in the brain, it can band together and wreak havoc inside neurons, damaging and ultimately killing them.

No one knows what triggers toxic beta-amyloid accumulation in the brain, but the sticky bits are made when the larger amyloid precursor protein is chopped up by enzymes, says Jim Malter, a pathologist in the UW-Madison School of Medicine and Public Health and senior author of the new study. Scientists have long hoped to prevent or treat Alzheimer's disease by keeping the amyloid precursor protein in check: less precursor should mean less of the dangerous pieces, which in turn should mean less cell death.

The current study pinpoints the fragile X mental retardation protein as an important player in this control. Malter and colleague Cara Westmark found that it normally restricts production of the full-length amyloid precursor in mice, releasing the protein's synthesis template only when the nerve cell is stimulated. By linking protein synthesis to neural activity, this regulation helps the brain cement useful connections while ignoring or eliminating worthless ones.

However, Malter and Westmark found that mice lacking the fragile X protein lost this level of control over the amyloid precursor and, subsequently, had much higher levels of the toxic beta-amyloid in their brains.

Links between developmental disabilities and degenerative disease do make sense, Malter says. Mental retardation and cognitive decline can reflect similar underlying problems, such as difficulties forming or maintaining correct neural pathways. Malter explains that the amyloid precursor protein was already known to be important at the sites of connections between neural cells and unusually high levels have been reported in patients with other developmental disorders, including autism and Down's syndrome.

While the new finding does not mean that the fragile X protein is directly involved in Alzheimer's disease, Malter says the result highlights a possible target for therapy. "Right now, there are no good drugs for Alzheimer's disease," he says. "The idea of reducing beta-amyloid seems sound in terms of treatment."

Rather than target the fragile X protein itself, Malter envisions using drugs to block a cell-surface receptor, a gateway to the cell that kicks off the fragile X protein's response to neural stimulation. In fact, he says, several drugs targeting the receptor already exist, originally developed decades ago as anti-anxiety treatments. He plans to start testing these compounds in mice to see if they can reduce build-up of the toxic protein.

If such drugs are effective against dangerous protein accumulation, they might be used for patients in the early stages of Alzheimer's to prevent disease progression. Though unlikely to reverse existing Alzheimer's symptoms, Malter says, "Keeping people at the same place would be a victory."

Source: by Jill Sakai, University of Wisconsin-Madison

Explore further: High prevalence of HCV in baby boomers presenting to ER

add to favorites email to friend print save as pdf

Related Stories

Cellular memory of stressful situations

Jan 28, 2015

Stress is unhealthy. The cells use therefore a variety of mechanisms to deal with stress and avert its immediate threat. However, certain stressful situations leave marks that go beyond the immediate response; ...

Study uncovers secrets of a clump-dissolving protein

Jan 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

Researchers identify new mechanism to aid cells under stress

Jan 26, 2015

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Engineering self-assembling amyloid fibers

Jan 26, 2015

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

New computation method helps identify functional DNA

Jan 21, 2015

Striving to unravel and comprehend DNA's biological significance, Cornell scientists have created a new computational method that can identify positions in the human genome that play a role in the proper ...

Recommended for you

The hidden burden of dengue fever in West Africa

10 hours ago

Misdiagnosis of febrile illnesses as malaria is a continuing problem in Africa. A new study shows that in Ghana, dengue fever is circulating in urban areas and going undiagnosed. The authors of the study hope to use the findings ...

Teenager with stroke symptoms actually had Lyme disease

10 hours ago

A Swiss teenager, recently returned home from a discotheque, came to the emergency department with classic sudden symptoms of stroke, only to be diagnosed with Lyme disease. The highly unusual case presentation was published ...

Understanding lung disease in aboriginal Australians

11 hours ago

A new study has confirmed that Aboriginal Australians have low forced vital capacity—or the amount of air that can be forcibly exhaled from the lungs after taking the deepest breath possible. The finding may account for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.