Renesas, Matsushita Develop Technique for Stablizing Operation of 45nm On-Chip SRAM

Feb 13, 2007
Renesas, Matsushita Develop Technique for Stablizing Operation of On-Chip 45nm SRAM
45nm On-Chip SRAM test chip.

Renesas Technology and Matsushita Electric Industrial today announced the development of a technique that achieves stable operation with 45nm process generation bulk CMOS for SRAM (Static Random Access Memory) that can be embedded in SoC (system-on-a-chip) devices and microprocessors (MPUs).

Tests of experimental chip with 512-Kbit SRAMs employing this technique have confirmed stable operation over a wide temperature range (-40°C to 125°C) and a larger operating voltage range margin with respect to process variations. The experimental SRAM chip, produced using a 45nm CMOS process, incorporated two different memory cell designs, one with a cell area of both 0.327µm2 and another with a cell area of only 0.245µm2 --- the world's smallest level. The smaller memory cell was achieved with a reduced processing dimension margin.

Details of this technology advance will be presented in paper 18.3 of Session 18 at the 2007 International Solid State Circuits Conference (ISSCC 2007) now being held in San Francisco. The innovation is of considerable significance because SRAM is an essential on-chip function for SoCs and MPUs used in embedded control applications. Conflicting trends see those applications becoming more sophisticated, requiring more SRAM, even as semiconductor process shrinks are making it more difficult to produce the stable SRAM operation necessary for proper device functionality. The 45nm process generation SRAM enabled by the new fabrication technique will make it possible to implement high-performance chips at low cost because it uses bulk CMOS instead of Silicon-on-Insulator (SOI) material, the more expensive alternative.

Overcoming problems caused by inevitable variations in threshold voltage

As LSI fabrication processes become finer, the increasing miniaturization causes greater variations of transistor characteristics, especially threshold voltage (Vth), which can disrupt SRAM operation. Vth variation takes two forms. Global Vth variation occurs on a chip-by-chip or wafer-by-wafer basis due to minute disparities in transistor shape, such as gate length and gate width. Thus, it shows deviations in the same direction among chips. Global Vth variation previously has been the main challenge SRAM designers have had to overcome.

By contrast, local Vth variation is caused by fluctuation of the state of impurities in semiconductors, and arises even in adjacent transistors of the same shape. Therefore, it occurs randomly and without directivity. With the progress in transistor miniaturization, the problem of local Vth variation first manifested itself in the 90nm process generation. It is a major challenge that must be surmounted for embedded SRAM implemented in the 45nm process generation.

The semiconductor industry has been actively pursuing development of techniques for achieving stable SRAM operation. However, the problem of Vth variation as it affects the 45nm process has required further technical developments. The solution for a 6-transistor type SRAM memory cell that Renesas Technology and Matsushita have developed has two elements. One is a read-assist circuit that performs automatic adjustment linked to Vth variations. The other is a write-assist circuit that uses hierarchically structured power supply wiring.

The new read-assist circuit employs the resistance of passive elements in a compensation function that has a layout resembling that of the memory cell. Since memory cell variations and resistance value fluctuations are linked, the effects of Vth variations are reduced. The compensation function adjusts voltage automatically with respect to temperature and process variations. As a result, memory cell stability has been secured in read operations under a wide range of operating conditions, even if the symmetry of memory cell electrical characteristics degrades through increases in temperature and process variations.

The new write-assist circuit adds finer power supply lines (divided into eight) to the memory cell's column-unit power supply lines in a way that the isolation needed for the write operation is performed only where necessary. Also, it implements hierarchically structured power supply wiring. This reduces power supply line capacitance in critical areas, allowing the power supply line potential to be dropped to a low potential at high speed. Measurements on the experimental chip confirm that even under worst-case conditions (-40°C, minimum operating voltage, and worst-case process conditions), the new write-assist circuit provides a major improvement in SRAM write speed compared to an SRAM design in which it isn't used.

Source: Renesas Technology

Explore further: X-ray detector on plastic delivers medical imaging performance

add to favorites email to friend print save as pdf

Related Stories

Extremely fast MRAM data storage within reach

Mar 08, 2011

Magnetic Random Access Memories (MRAM) are the most important new modules on the market of computer storage devices. Like the well known USB-sticks, they store information into static memory, but MRAM offer ...

Low power, programmable cell array demonstrated by NEC

Feb 22, 2011

NEC Corporation announced today the successful demonstration of a low power programmable cell array using a rewritable and nonvolatile solid-electrolyte switch, "NanoBridge," integrated into a 90nm CMOS.

Recommended for you

Toshiba to launch world's fastest microSD memory cards

13 minutes ago

Toshiba Corporation today announced that it will launch the world's fastest microSD memory cards, compliant with UHS-II, the ultra high speed serial bus interface defined in SD Memory Card Standard Ver. 4.20. ...

Venture investments jump to $9.5B in 1Q

3 hours ago

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

3 hours ago

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...

Hackathon team's GoogolPlex gives Siri extra powers

13 hours ago

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.