Molecular 'fishing' technique paves way for advanced hand-held sensing devices

Feb 12, 2007

A new molecular "fishing" technique developed by researchers at Duke University and Duke's Pratt School of Engineering lays the groundwork for future advances in hand-held sensing devices.

Hand-held devices used for medical testing or environmental and food-safety monitoring could quickly and precisely measure concentrations of virtually any chemical substance, including blood proteins, toxic pollutants and dangerous biological agents, in a test solution, according to the researchers.

The researchers describe the chemical methodology that would enable such devices in this week's online early edition of the journal Proceedings of the National Academy of Sciences.

The new technique uses an atomic force microscope (AFM), a device for observing the surface of individual molecules and measuring the force of interactions among them. The AFM includes a tiny cantilever arm with a sharp tip that scans the surface of atomic specimens, and monitoring the deflection of the cantilever provides information about the force of molecular interactions.

The researchers use the AFM's cantilever as a fishing rod, which they bait with a sample of the chemical to be measured in order to catch "fish," actually proteins known to specifically bind the target chemical. They dangle the chemical "worm" in a solution that contains the target chemical and also is stocked with the protein fish. Because the fish are easier to catch with the baited cantilever when there are fewer free worms to compete with, the researchers can quantify the amount of chemical in solution by tallying the number of successful catches.

"As you sample the surface with the AFM cantilever fishing rod, the number of times you get a 'bite' provides a measure of the chemical concentration," said chemistry professor Eric Toone of Duke University.

The team also included mechanical engineering and materials science professors Rob Clark and Piotr Marszalek, both of Duke's Pratt School. All three investigators are members of Duke's Center for Biologically Inspired Materials.

Their method could be adapted for virtually any chemical of interest by varying the identity of the molecular worms and fish, according to the researchers.

While the current process requires about 200 pulls on the cantilever rod and takes hours to provide an accurate reading, it could be made much faster in a very straightforward way, the researchers said. "To get enough pulls, you can either pull one rod 200 times or pull 200 rods once," Clark said. "The test could be made massively parallel and very fast."

In demonstrating the new method using lactose molecules as the worms and a protein called galectin 3 as the fish, the researchers relied on computerized AFM controls to lower the baited cantilever toward the solution a billionth of a meter at a time.

"Instead of plunging into the surface, we approached it step by step in order to minimize the number of interactions to one, maybe two, molecules," Marszalek said.

Based on the force measured on the AFM rod as it was withdrawn from the solution, the researchers judged each attempt either as nonbinding, meaning they didn't catch anything or made only passing contact, or as binding. When galectin 3 fish bound the lactose bait, withdrawal of the cantilever registered a greater force. They repeated the process until the bait had made some form of contact at least 350 times.

They found, as expected, that the probability of binding varied with the concentration of lactose in the solution. At low concentrations, binding occurred with the greatest frequency. As the concentration rose, the likelihood of binding declined. The researchers used that probability of binding to calculate the chemical concentration.

The researchers suggest that the method eventually could be incorporated into devices similar to hand-held personal digital assistants. Such devices likely could be made adaptable, they said, testing for different chemicals by simply switching out a chip.

AFM fishing has advantages over other testing methods that rely on heat or changes in optical properties, the researchers said.

"Although broadly applicable, such techniques require long sampling times and equipment that isn't suitable for use in the field," Toone said. Additionally, methods that depend on optical characteristics generally require the testing solution to be clear, precluding their use on blood, milk or any other opaque solution.

The researchers said they will continue to examine the fundamental biophysics that underlie the new method and to develop practical applications.

Source: Duke University

Explore further: Sweet-smelling breath to help diabetes diagnosis in children

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

3 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

6 hours ago

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

NASA issues 'remastered' view of Jupiter's moon Europa

15 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

15 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

Recommended for you

Heat-conducting plastic developed

6 hours ago

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a University of Michigan research team has made a plastic blend that does so 10 times better than its conventional ...

Electronic switches on the molecular scale

11 hours ago

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

Mimicking photosynthesis with man-made leaves

11 hours ago

Scientists have long been trying to emulate the way in which plants harvest energy from the sun through photosynthesis. Plants are able to absorb photons from even weak sunlight using light antennae made ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.