Robotic exoskeleton replaces muscle work

Feb 08, 2007

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

The ankle exoskeleton developed at U-M was worn by healthy subjects to measure how the device affected ankle function. The U-M team has no plans to build a commercial exoskeleton, but their results suggest promising applications for rehabilitation and physical therapy, and a similar approach could be used by other groups who do build such technology.

"This could benefit stroke patients or patients with incomplete injuries of the spinal cord," said Daniel Ferris, associate professor in movement science at U-M. "For patients that can walk slowly, a brace like this may help them walk faster and more effectively."

Ferris and former U-M doctoral student Keith Gordon, who is now a post-doctoral fellow at the Rehabilitation Institute of Chicago, showed that the wearer of the U-M ankle exoskeleton could learn how to walk with the exoskeleton in about 30 minutes. Additionally, the wearer's nervous system retained the ability to control the exoskeleton three days later.

Electrical signals sent by the brain to our muscles tell them how to move. In people with spinal injuries or some neurological disorders, those electrical signals don't arrive full strength and are uncoordinated. In addition, patients are less able to keep track of exactly where and how their muscles move, which makes re-learning movement difficult.

Typically, robotic rehabilitative devices are worn by patients so that the limb is moved by the brace, which receives its instructions from a computer. Such devices use repetition to help force a movement pattern.

The U-M robotic exoskeleton works the opposite of these rehabilitation aids. In the U-M device, electrodes were attached to the wearer's leg and those electrical signals received from the brain were translated into movement by the exoskeleton.

"The (artificial) muscles are pneumatic. When the computer gets the electrical signal from the (wearer's) muscle, it increases the air pressure into the artificial muscle on the brace," Ferris said. "Essentially the artificial muscle contracts with the person's muscle."

Initially the wearer's gait was disrupted because the mechanical power added by the exoskeleton made the muscle stronger. However, in a relatively short time, the wearers adapted to the new strength and used their muscles less because the exoskeleton was doing more of the work. Their gait normalized after about 30 minutes.

The next step is to test the device on patients with impaired muscle function, Ferris said.

Source: University of Michigan

Explore further: Research milestone in CCHF virus could help identify new treatments

add to favorites email to friend print save as pdf

Related Stories

Indonesia to ratify ASEAN haze agreement

45 minutes ago

Indonesia's parliament on Tuesday voted to ratify a regional agreement on cross-border haze as fires ripped through forests in the west of the country, choking neighbouring Singapore with hazardous smog.

White House backs use of body cameras by police

2 hours ago

Requiring police officers to wear body cameras is one potential solution for bridging deep mistrust between law enforcement and the public, the White House said, weighing in on a national debate sparked by the shooting of ...

Recommended for you

New biomedical implants accelerate bone healing

12 minutes ago

A major success in developing new biomedical implants with the ability to accelerate bone healing has been reported by a group of scientists from the Department of Restorative Dentistry, University of Malaya. ...

A new way to prevent the spread of devastating diseases

17 hours ago

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria, and tuberculosis. While limited progress has been made along these lines, ...

New molecule allows for increase in stem cell transplants

17 hours ago

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the fi ...

Team explores STXBP5 gene and its role in blood clotting

20 hours ago

Two independent groups of researchers led by Sidney (Wally) Whiteheart, PhD, of the University of Kentucky, and Charles Lowenstein, MD, of the University of Rochester, have published important studies exploring the role that ...

User comments : 0