AMO Manufactures First Graphene Transistors

Feb 08, 2007
AMO Manufactures First Graphene Transistors

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Compared to conventional silicon and SOI MOSFETs the researchers realized a significant enhancement of electron and hole mobility.

Moore’s law, which has dictated ambitious innovation cycles to the semiconductor industry over the last decades, may finally be running out of steam. In the future, innovations for silicon technology may only be realized by integrating new functionalities or novel materials.

Carbon is one of the most probable candidates: impressive potential for nanoelectronics applications has been demonstrated with carbon nanotubes – and graphene!

A conventional CMOS-compatible process has been applied to fabricate a graphene field-effect device – a transistor made from a monolayer of carbon. The observed mobility in the devices exceeds the universal mobility in silicon MOSFETs. Furthermore, a second transistor gate was placed on top of the graphene film for the first time. AMO’s results confirm the high potential of graphene for future nanoelectronic devices.

First experimental details will be published in IEEE Electron Device Letters in April 2007.

Citation: M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, “A Graphene Field Effect Device”, IEEE Electron Device Letters, Vol. 28, No. 4, April 2007.

Source: AMO

Explore further: Asteroid impacts on Earth make structurally bizarre diamonds

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

'Mind the gap' between atomically thin materials

17 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.