Flow of tiny bubbles mimics computer circuitry

Feb 08, 2007
Flow of tiny bubbles mimics computer circuitry
MIT researchers have developed a computer chip that runs on microbubbles like these. Photo courtesy / Manu Prakash

In work that could dramatically boost the capabilities of "lab on a chip" devices, MIT researchers have created a way to use tiny bubbles to mimic the capabilities of a computer.

The team, based at MIT's Center for Bits and Atoms, reports that the bubbles in their microfluidic device can carry on-chip process control information, just like the electronic circuits of a traditional microprocessor, while also performing chemical reactions. The work will appear in the Feb. 9 issue of Science.

Flow of tiny bubbles mimics computer circuitry
A colored montage of a ring oscillator used in the microfluidic computer developed by researchers at MIT. Starting with top left image, and reading left to right, the yellow bubble flows around the ring until it reaches and joins a stream of bubbles. Image / Felice Frankel and Manu Prakash, MIT

"Bubble logic merges chemistry with computation, allowing a digital bit to carry a chemical payload. Until now, there was a clear distinction between the materials in a reaction and the mechanisms to control them," said co-author Neil Gershenfeld, director of the Center for Bits and Atoms and associate professor of media arts and sciences.

Microfluidics allow scientists to create tiny chips where nanoliters of fluids flow from one part of the chip to another, undergoing controlled chemical reactions in different parts of the chip and replacing the conventional test tubes and glassware used for chemistry for centuries.

The technology has the potential to revolutionize large-scale chemical analysis and synthesis, environmental and medical testing and industrial production processes, but applications outside of the laboratory have been limited so far by the external control systems-valves and plumbing-required for its operation.

But now, the MIT researchers are able to control microfluidic chips via the interactions of bubbles flowing through microchannels, eliminating the need for external controls. "Now you can program what's happening inside the lab on a chip, by designing bubble logic circuits that function just like their electronic counterparts," said Manu Prakash, Gershenfeld's co-author and graduate student.

Controlling chemical reactions will likely be a primary application for the chips, according to the researchers. It will be possible to create large-scale microfluidic systems such as chemical memories, which store thousands of reagents on a chip (similar to data storage), using counters to dispense exact amounts and logic circuits to deliver them to specific destinations.

Other applications include combinatorial synthesis of many compositions at the same time, programmable print heads that can deposit a range of functional materials, and sorting biological cells.

The researchers modeled their new microfluidic chips on the architecture of existing digital circuits. But instead of using high and low voltages to represent a bit of information, they use the presence or absence of a bubble. They report on nitrogen bubbles in water, but any other combinations of materials that don't mix would work, such as oil and water.

In the Science paper they demonstrate all of the elements needed for any new logic family, including gates, memories, amplifiers and oscillators. The speed of operation is about 1,000 times slower than a typical electronic microprocessor, but 100 times faster than the external valves and control systems used in existing microfluidic chips. Gershenfeld and Prakash anticipate that its invention will allow existing circuit designs (and designers) to work in the domain of microfluidics.

Source: Massachusetts Institute of Technology

Explore further: Surprise: Biological microstructures light up after heating

add to favorites email to friend print save as pdf

Related Stories

Research hones pore-scale models

Jul 14, 2014

The physical and chemical processes that occur at the scale of individual soil particles dictate the way fluids flow underground over much larger scales. To more accurately predict how plumes of subsurface ...

Growing unknown microbes one by one

Jun 24, 2014

(Phys.org) —Trillions of bacteria live in and on the human body; a few species can make us sick, but many others keep us healthy by boosting digestion and preventing inflammation. Although there's plenty ...

Progress on detecting glucose levels in saliva

Jun 03, 2014

Researchers from Brown University have developed a new biochip sensor that can selectively measure concentrations of glucose in a complex solution similar to human saliva. The advance is an important step ...

Recommended for you

Light pulses control graphene's electrical behavior

20 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

User comments : 0