New Technology Aims to Lighten the Load for Soldiers

Feb 08, 2007

The high-tech American soldier, equipped with computers, radios and night-vision goggles, has become a familiar image. However, less well known are the physical and logistical burdens associated with carrying all of that electronic equipment. Soldiers are laden with pounds of batteries to provide power for all the electronic devices and weaponry so prominently used on today¿s battlefield.

At the University of Missouri-Columbia, researchers in the College of Engineering are attempting to lighten that load. Noah Manring, associate dean of research and professor of mechanical and aerospace engineering, and Roger Fales, assistant professor of mechanical and aerospace engineering, are designing a lightweight, highly efficient portable power generator that could replace some battlefield batteries.

They are collaborating with researchers from Vanderbilt University, Tennessee Technological University and the North Carolina-based International Technology Center. Manring and Fales are attempting to develop a vane motor - of the type typically used for pneumatic wrenches - driven by hot gas instead of compressed air.

"Today's vane motor derives its energy from compressed air or pressurized liquid; a hot gas-driven vane motor would get its energy from vaporized jet fuel produced by a chemical reaction," Manring said. "These sources of energy are extremely different, and require different motor designs."

The gas-driven vane motor would essentially do the job of a turbine engine, but provide power more efficiently and weigh less than turbines. Project goals call for a motor that weighs less than 300 grams, or about two-thirds of a pound.

"No one has a portable generator as compact as this will be," Fales said.

A prototype of the new motor should be available by June. Once completed, the new portable generator would provide power for the military's computers, telephones and radios, which would "reduce the need for storing energy in batteries," Fales said.

Source: University of Missouri

Explore further: First drone in Nevada test program crashes in demo

add to favorites email to friend print save as pdf

Related Stories

Consumer loyalty driven by aesthetics over functionality

1 hour ago

When designing a new car, manufacturers might try to attract consumers with more horsepower, increased fuel efficiency or a lower price point. But new research from San Francisco State University shows consumers' loyalty ...

Recommended for you

First drone in Nevada test program crashes in demo

5 hours ago

A drone testing program in Nevada is off to a bumpy start after the first unmanned aircraft authorized to fly without Federal Aviation Administration supervision crashed during a ceremony in Boulder City.

Fully automated: Thousands of blood samples every hour

13 hours ago

Siemens is supplying automation technology for the longest and one of the most cutting-edge sample processing lines in any clinical laboratory. The line, or automation track, 200 meters long, in Marlborough, ...

Explainer: What is 4-D printing?

14 hours ago

Additive manufacturing – or 3D printing – is 30 years old this year. Today, it's found not just in industry but in households, as the price of 3D printers has fallen below US$1,000. Knowing you can p ...

First series production vehicle with software control

14 hours ago

Siemens has unveiled the first electric series production vehicle with the central electronics and software architecture RACE. This technology, developed in the research project of the same name, replaces ...

Amputee puts limb system through its paces

16 hours ago

"Amputee Makes History with APL's Modular Prosthetic Limb" is the headline from Johns Hopkins Applied Physics Laboratory, where a team working on prosthetics observed a milestone when a double amputee showed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.