Scientists post a lower speed limit for magnetic recording

May 17, 2004
Magnetic recording

The speed of magnetic recording -- a crucial factor in a computer's power and multimedia capabilities -- depends on how fast one can switch a magnet's poles. An experiment at the Stanford Synchrotron Radiation Laboratory (SSRL) found that the ultimate speed of magnetic switching is at least 1,000 times slower than previously expected. The result, which appears in the April 22 issue of the journal Nature, has implications for future hard disk computer drive technologies.

In the push toward ever-faster magnetic recording, experts expected to find a physical limit, a threshold speed beyond which materials would respond chaotically. "If you had asked me a year ago, 'How fast does one have to create a pulse that does not switch magnetization?' my answer would have been one femtosecond (one thousandth of a trillionth of a second)," said Professor Joachim Stöhr, deputy director of SSRL. "Chaotic behavior was not expected in this experiment, which ran in the picosecond (trillionth-of-a-second) range."

In a computer hard drive, a writing head hovers over a disk that's rapidly spinning -- at up to 15,000 rotations per minute, or 150 times faster than a CD player. An electric current running in the head creates a magnetic field, which records data by turning tiny areas of the disk's surface into microscopic magnets. The disk is coated with a special, grainy material that allows only two, opposite directions of the magnetization, representing the 0 or 1 of a basic unit of data, or bit. High recording speed requires the coating material to respond and switch its poles quickly enough to record each bit reliably.

The challenge now will be to understand why the maximum speed seems to be at least 1,000 times lower than expected. The explanation, Siegmann said, could lie in the way thermal motion interacts with the magnetization process.

The limit on recording speed must be somewhere between 100 billion and a trillion bits per second, but is unlikely to ever affect technology, said Seagate's Weller. State-of-the-art drives can now record about 1 billion bits per second, and long before that speed can be increased 100-fold, other physical constraints will get in the way, he said. In particular, higher speed requires smaller magnetic grains, but their size cannot go below the size of atoms.

The SSRL result could be an important step toward understanding the basic physics of data recording, leading to the development of entirely new technologies. A promising idea, Weller said, is heat-assisted recording, where a small section of the recording medium is temporarily brought to a high temperature, to speed up its magnetization reversal.

Read more technical details about experiment on Stanford University News web-site.

Explore further: Cold Atom Laboratory creates atomic dance

add to favorites email to friend print save as pdf

Related Stories

An anomaly in satellite flybys confounds scientists

Sep 22, 2014

When space probes, such as Rosetta and Cassini, fly over certain planets and moons in order to gain momentum and travel long distances, their speed changes slightly for an unknown reason. A Spanish researcher ...

X-ray imaging paves way for novel solar cell production

Sep 09, 2014

The sharp X-ray vision of DESY's research light source PETRA III paves the way for a new technique to produce cheap, flexible and versatile double solar cells. The method developed by scientists from the ...

Recommended for you

Cold Atom Laboratory creates atomic dance

2 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Wild molecular interactions in a new hydrogen mixture

8 hours ago

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Scientists create possible precursor to life

10 hours ago

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 0