Etna produces catalyst: direct synthesis of carbon nanotubes with volcanic rock

Feb 06, 2007

Since their discovery in the early 1990s, carbon nanotubes and carbon nanofibers—tiny structures made of pure carbon—have been used in a wide variety of applications. They have become indispensable in the nanosciences and nanotechnology. However, because their production on an industrial scale remains expensive, their commercial use in such areas as catalysis has remained unthinkable.

This could now be changing, thanks to researchers from the Fritz Haber Institute in Berlin: Dang Sheng Su and his co-workers have used igneous rock from Mount Etna to produce carbon nanotubes and fibers directly by deposition from the gas phase. As they explain in the journal Angewandte Chemie, the naturally occurring iron oxide particles in lava make it an effective natural catalyst, possibly smoothing the way to a more efficient production method.

Etna is the most active European volcano. During its particularly violent eruptions in 2002 and 2003, several million cubic meters of lava were ejected. The fertility of mineral-rich volcanic soils has long been known; Su and his colleagues wanted to elicit another, completely new sort of “fertility” for science. It could be amazingly helpful in the synthesis of carbon nanotubes and fibers.

Lava rock is extremely porous and contains large quantities of finely divided iron oxides. This is just what is needed for the synthesis of these tiny carbon structures. The researchers pulverize the rocks and heat them to 700 °C under a hydrogen atmosphere. This reduces the iron oxide particles to elemental iron.

When a mixture of the gases hydrogen and ethylene is directed over the powder, the iron particles catalyze the decomposition of ethylene to elemental carbon. This is deposited on the lava rock in the form of tiny tubes and fibers. The advantages of this new method? The catalyst is produced naturally in large quantities and is thus affordable; the catalytic iron does not need to be deposited on any kind of substrate, as the lava is both catalyst and substrate in one; and this process works without any “wet” chemical steps.

The geological aspect of this reaction is also quite interesting: if a carbon source is present, carbon nanotubes and fibers can be formed on minerals at relatively moderate temperatures. Volcanoes produce gases such as methane and hydrogen. Could these forms of carbon already have been generated on Earth millions of years ago? Hydrogen, carbon oxides, and metallic iron are also present in interstellar space—could these little tubes and fibers be produced in space?

Citation: Dang Sheng Su, Natural Lavas as Catalysts for Efficient Production of Carbon Nanotubes and Nanofibers, Angewandte Chemie International Edition, doi: 10.1002/anie.200604207

Source: Angewandte Chemie

Explore further: Improving printed electronics process and device characterization

add to favorites email to friend print save as pdf

Related Stories

Team bolsters batteries with nanotubes

Jun 17, 2014

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) are turning to extremely tiny tubes and rods to boost power and durability in lithium-ion batteries, the energy sources for ...

NREL bolsters batteries with nanotubes

Jul 01, 2014

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) are turning to extremely tiny tubes and rods to boost power and durability in lithium-ion batteries, the energy sources for ...

Steel's inner strength

Jun 10, 2014

(Phys.org) —A long-term collaboration between the University and industry has resulted in a super-strong form of steel, which is now being manufactured in the UK for use as stronger and cheaper armour for ...

Short nanotubes target pancreatic cancer

Jun 05, 2014

(Phys.org) —Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice University and the University ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0