To the Edge of Melting

Feb 02, 2007
To the Edge of Melting
To time-stamp the arrival of each x-ray pulse, researchers use an electro-optic crystal (green) placed next to the electron beam (white) in the linear accelerator just before the beam produces x-rays. A laser (red) probes changes in the crystal to measure the exact time the beam passed by. This image was created by Jean Charles Castagna, SLAC.

Picking a relatively simple system, SLAC scientists and their collaborators used advanced tools to see the very first instants of change in a solid brought to the edge of melting. Their results appear in the February 2 issue of Science.

The experiment also demonstrated an important timing technique and was one of the last endeavors at the now-dismantled Sub-Picosecond Pulse Source (SPPS)—a proving ground for the more powerful Linac Coherent Light Source (LCLS) now under construction at SLAC. Being able to agitate a material with a laser pulse and then immediately measure its altered state with x-rays opens up an exciting world for researchers concerned with more complex systems that could prove helpful to medicine, clean energy and other fields.

When a laser pulse strikes a semi-metal called bismuth, it disturbs the material's electrons. Because the laser energy is not enough to melt bismuth, the electrons relax back to their normal state in less than a nanosecond. But what happens in between?

"We had to be quick to figure it out," said lead author David Fritz, who worked on the project as a University of Michigan student and is now an instrument scientist for LCLS.

The laser, the x-ray pulses and the atoms themselves operate on femtosecond time scales—quadrillionths of a second. Scientists need to know exactly when the laser fired and when the x-rays swooped through, so that the picture they assemble from the data is chronologically ordered. The authors utilized an electro-optic crystal to time-stamp the arrival of each x-ray pulse, solving a difficult problem: while lasers can be pulsed in steady, reliable intervals, x-rays from a linear accelerator cannot, and thus require a "stop-watch" to mark their arrival time.

The laser instantly changes bismuth's potential energy surface—a measure of the forces that hold solids together—thus weakening bismuth's atomic bonds. This puts the atom's nucleus out of equilibrium, like moving a marble from the center of a bowl up its sloped sides. To get back into equilibrium, the atom "rolls" to the center of the bowl and oscillates around the lowest point, like a marble before it comes to rest in the center of the bowl. The researchers measured the frequency of these oscillations to determine the forces that bind the atoms together.

The results also back a theoretical framework used to predict potential energy surfaces for systems that are in equilibrium. The framework, with simple modifications, surprisingly worked for the out-of-equilibrium bismuth system as well.

This is the first time-dependent mapping of a solid's potential energy surface. But with the advent of LCLS close by, researchers can look forward to making and understanding many more such maps.

Source: by Heather Rock Woods, Stanford Linear Accelerator Center

Explore further: Breakthrough in OLED technology

add to favorites email to friend print save as pdf

Related Stories

Igniting the air for atmospheric research

Feb 18, 2015

Scientists from Vienna and Moscow have created a high-energy mid-infrared laser powerful enough to create shining filaments in the air. Such devices could be used to detect chemical substances in the atmosphere.

Five ways to put tiny targets in front of an X-ray laser

Feb 03, 2015

X-ray devices have long been used to see the inner structure of things, from bone breaks in the human body to the contents of luggage at airport security checkpoints. But to see life's chemistry and exotic materials at the ...

Recommended for you

Breakthrough in OLED technology

15 hours ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

18 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.