Researchers build lasers for NASA climate studies

Feb 02, 2007
Researchers build lasers for NASA climate studies
Montana State University electrical engineering professor Kevin Repasky (center) and graduate students Mike Obland (left) and David Hoffman stand next to a water-vapor detecting laser that may help scientists better understand the earth's climate. The group won a $1.1 million grant from NASA to advance their work on lasers for climate studies. The laser pictured fires through an opening in the roof of MSU's Cobleigh Hall. Credit: MSU photo by Jay Thane

NASA has given researchers at Montana State University $1.14 million to study two important, but poorly understood, pieces in the global-warming puzzle: aerosols and water vapor in the atmosphere.

"Aerosols are any kind of gunk in the sky. They can be dust, soot, pollution or any number of particulates," said Kevin Repasky, MSU electrical engineering professor and principal investigator for the project.

Some aerosols, like black soot, absorb energy and contribute to atmospheric warming. Others, such as light-colored dust, reflect sunlight back into space and help hold temperatures down.

"There is some evidence that, in general, aerosols are causing a little cooling of the atmosphere," Repasky said. "However at the same time, greenhouse gases are causing warming. Overall, there is a net increase of energy in the atmosphere, so the greenhouse gases are winning out.

"It's a very interesting issue," Repasky said. "If cars burn cleaner and there are fewer particulates coming out of smokestacks, could that potentially accelerate global warming? That's why more information is needed to understand these complex relations."

A portion of the two-year grant will be used to build a two-color light-detection and ranging system (LIDAR) to determine the concentration of aerosols in the atmosphere from the earth's surface continuously to more than a mile high. The device will also be able to tell if the aerosols are from Asian dust storms, forest fires, industrial pollution or other sources.

Repasky is working on the project with fellow MSU professors Joe Shaw, electrical engineering, and John Carlsten, physics, as well as master's degree candidate David Hoffman of Salt Lake City, electrical engineering, and doctoral candidate Michael Obland of Colstrip, physics.

John Reagan, an electrical and computer engineer from the University of Arizona, will assist the Repasky group in processing the data gathered from the LIDAR. Reagan has helped design a number of NASA instruments.

The MSU group will also use the grant to build a second device for determining how much water vapor is in the atmosphere up to several miles high. Water vapor is the chief greenhouse gas, but unlike carbon dioxide, its concentration varies widely over the globe from day to day.

"Water vapor is a big unknown for climate change," Repasky said.

Current instruments for detecting water vapor are "about the size of a UPS truck," expensive, and require a great deal of power, Repasky said.

For those reasons, there is no network for monitoring the global changes in water vapor. Repasky is hoping to build a device that weighs roughly 80 pounds, can fit in the back of a pickup, be relatively inexpensive and operate on its own.

"We are hoping to build devices that we can just put in a field and leave to run," Repasky said.

The water-vapor-detection device utilizes a laser equipped with a new technology developed by Repasky's group that allows the laser to be tuned to detect specific gases in the atmosphere. Such tuning could make the laser useful for detecting pollutants or other greenhouse gases such as methane or nitrous oxide.

The NASA grant also provides money for MSU to purchase, set up, and maintain two other sensors for gathering atmospheric data. One sensor will be an addition to Aeronet, a worldwide network that tracks how much sunlight is reaching the earth's surface. The other sensor will be added to the Micropulse LIDAR Network, which examines aerosols, but to a lesser extent than the laser Repasky and his colleagues are building.

"We fill a unique niche in this whole area, known as remote-sensing, because we can build lasers for very specific uses," Repasky said. "And we build them right here on campus."

Source: Montana State University

Explore further: A spray-on light show on four wheels: Darkside Scientific

add to favorites email to friend print save as pdf

Related Stories

US threatened Yahoo with huge fine over surveillance

21 minutes ago

US authorities threatened to fine Yahoo $250,000 a day if it failed to comply with a secret surveillance program requiring it to hand over user data in the name of national security, court documents showed Thursday.

Microbes evolve faster than ocean can disperse them

22 minutes ago

Two Northeastern University researchers and their international colleagues have created an advanced model aimed at exploring the role of neutral evolution in the biogeographic distribution of ocean microbes.

Recommended for you

A spray-on light show on four wheels: Darkside Scientific

Sep 14, 2014

Darkside Scientific recently drew a lot of gazes its way in its video release of a car treated to the company's electroluminescent paint called LumiLor. Electroluminescence (EL) is a characteristic of a material ...

Research project on accident-avoiding vehicle concluded

Sep 12, 2014

PRORETA 3 is completed after three and a half years of research work: The comprehensive driver assistance and automated maneuver concept supports the driver in keeping the vehicle in a safe driving corridor- ...

Making drones more customizable

Sep 12, 2014

A first-ever standard "operating system" for drones, developed by a startup with MIT roots, could soon help manufacturers easily design and customize unmanned aerial vehicles (UAVs) for multiple applications.

User comments : 0