Important mechanism identified in the formation of blood vessels

Jan 29, 2007

All tissues, sick and healthy alike, need a blood supply to survive and grow. The key to many medical problems, like preventing tumour development, is therefore to obstruct the spread of the blood vessels. Research scientists at Karolinska Institutet have now discovered a heretofore unknown mechanism for how the body links together its blood vessels.

New blood vessels are formed when a "shoot" sprouts from an already existing vessel. These shoots lengthen, branch off and contact other vessels as they form communicating networks of channels. The process is called "angiogenesis" and is important in foetal development and normal tissue formation in connection with the healing of wounds, the menstrual cycle and so on. However, it also plays a critical part in morbid tissue formation, such as cancer and chronic inflammatory diseases.

The inhibition of morbid angiogenesis therefore has very attractive therapeutic potential for a variety of diseases. Tumours, for instance, can grow no larger than 1 or 2 mm without new blood vessels, upon which they are dependent for their proliferation. To date, anti-angiogenic therapy has proved effective in the treatment of colon cancer and the common eye disease AMD (Age-dependent Macula Degeneration).

All therapies have so far targeted the growth factor VEGF (Vascular Endothelial Growth Factor). VEGF controls several important functions during the formation of blood vessels by signalling via receptors on the surface of the endothelial cells, the specialised layer of cells on the interior surface of the blood vessels.

Swedish scientists at Karolinska Institutet and the biotech company AngioGenetics AB have now shown that another factor called Dll4 (Delta-like 4) has a similarly fundamental role in blood vessel formation as VEGF. The results are published in Nature no. 28 (January 2007) and can mean that Dll4 is just as important a target for anti-angiogenic drugs as VEGF.

"We can now develop ways of boosting the effect of existing anti-angiogenic therapies, and maybe we can even start to treat tumour types that do not currently respond to anti-angiogenic drugs," says Mats Hellström, one of the scientists involved in the study.

The researchers have found that Dll4 signalling determines how many sprouts bud off from the parent vessel. This principle is critical to the number of branches and links that form and to attaining the correct density of vessels. Too great a blood supply to a tissue is just as devastating as too little.

Source: Karolinska Institutet

Explore further: ALS Ice Bucket Challenge arrives in North Korea

add to favorites email to friend print save as pdf

Related Stories

What's wiping out the Caribbean corals?

Aug 01, 2014

Here's what we know about white-band disease: It has already killed up to 95 percent of the Caribbean's reef-building elkhorn and staghorn corals, and it's caused by an infectious bacteria that seems to be ...

Advancing medicine, layer by layer

Jul 02, 2014

Personalized cancer treatments and better bone implants could grow from techniques demonstrated by graduate students Stephen W. Morton and Nisarg J. Shah, who are both working in chemical engineering professor ...

Recommended for you

ALS Ice Bucket Challenge arrives in North Korea

Aug 31, 2014

It's pretty hard to find a novel way to do the ALS Ice Bucket Challenge by now, but two-time Grammy-winning rapper Pras Michel, a founding member of the Fugees, has done it—getting his dousing in the center ...

Cold cash just keeps washing in from ALS challenge

Aug 28, 2014

In the couple of hours it took an official from the ALS Association to return a reporter's call for comment, the group's ubiquitous "ice bucket challenge" had brought in a few million more dollars.

Medtronic spends $350M on another European deal

Aug 27, 2014

U.S. medical device maker Medtronic is building stronger ties to Europe, a couple months after announcing a $42.9 billion acquisition that involves moving its main executive offices across the Atlantic, where it can get a ...

User comments : 0