New, unique microscope for nanotech

Dec 09, 2005

UC Davis researchers in nanotechnology, chemistry and biology now have access to one of the most advanced microscopes of its type in the world. The new Spectral Imaging Facility, opened this fall, is a combination of an atomic force microscope and a laser scanning confocal microscope, the first commercial machine of its kind.

The atomic force microscope was built by Asylum Research of Santa Barbara and the confocal microscope system by Olympus America Inc. Integration of the two systems was carried out by Asylum Research with the participation of scientists led by Gang-yu Liu, professor of chemistry at UC Davis. Acquisition of the instrument was funded by a grant of $354,000 from the National Science Foundation, matched by $151,714 from UC Davis.

The confocal microscope allows three-dimensional imaging of samples, such as cells, and picks up structures tagged with fluorescent dyes. Instead of cutting a sample into thin slices, a researcher can focus through the entire sample and resolve it in three dimensions.

The atomic force microscope uses an extremely fine tip to run over the surface of a sample and "see" extremely fine detail down to an atomic scale.

"It allows you to see both the detail and the bulk," Liu said.

For example, biologists could use fluorescent tags to look at structures inside a cell and link them to very small changes on the cell membrane. Materials scientists could use it to get information about the bulk structure of a material and to measure the arrangement of atoms at the surface. The tip of the atomic force microscope can also be used as a probe to nudge cells, or place atoms or molecules into new, microscopic patterns.

The project includes 24 UC Davis faculty from the departments of Chemistry and of Physics; the colleges of Engineering, Agricultural and Environmental Sciences, and Biological Sciences; the School of Medicine; and from the Lawrence Livermore National Laboratory.

Source: University of California - Davis

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Pebble smartwatch nears Kickstarter record

19 minutes ago

The latest version of the Pebble smartwatch neared a record funding amount on Kickstarter on Friday amid growing interest in wearable tech and ahead of the highly anticipated Apple Watch launch.

A molecular compass for bird navigation

1 hour ago

Each year, the Arctic Tern travels over 40,000 miles, migrating nearly from pole to pole and back again. Other birds make similar (though shorter) journeys in search of warmer climes. How do these birds manage ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.