Sharp Develops Mass-Production Technology for Triple-Junction Thin-Film Solar Cells

Jan 25, 2007
Sharp Develops Mass-Production Technology for Triple-Junction Thin-Film Solar Cells

Sharp Corporation has successfully developed mass-production technology for stacked triple-junction thin-film solar cells by turning a conventional two-active-layer structure (amorphous silicon plus microcrystalline silicon) into a triple-junction structure with amorphous silicon (two active layers) and microcrystalline silicon (single active layer).

This new architecture boosts cell conversion efficiency from 11% to 13% and module conversion efficiency from 8.6% to 10%. Mass production is slated to begin in May 2007 at Sharp’s Katsuragi Plant in Nara Prefecture.

Creating two amorphous silicon active layers significantly increases voltage levels, and structuring the cell to have three active layers in combination with microcrystalline silicon decreases light-induced degradation (drop in conversion efficiency). The result is high conversion efficiencies at the top levels in the industry, with cell conversion efficiency at 13% and module conversion efficiency at 10%.

Normally, the shift from a two-layer structure to a three-layer structure would demand an increase in production equipment, but these newly developed thin-film solar cells can be fabricated on the same equipment as conventional tandem (two-layer) cells. Consequently, the shift to multiple active layers enables increases in conversion efficiencies and thus a lower price per watt without the need for expensive, large-scale equipment.

In addition, using this triple-junction thin-film solar cell in Sharp’s Lumiwall Illuminating Solar Panel, a combination of solar module and LEDs, or in transparent thin-film solar modules designed for use as architectural elements, will enable higher power output. Expectations are high that this new development will expand the range of applications for these products even further.

Source: Sharp Corporation

Explore further: X-ray detector on plastic delivers medical imaging performance

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Under some LED bulbs whites aren't 'whiter than white'

1 hour ago

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

A robot dives into search for Malaysian Airlines flight

2 hours ago

In the hunt for signs of Malaysian Airlines flight MH370—which disappeared on March 8 after deviating for unknown reasons from its scheduled flight path—all eyes today turn to a company that got its start ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

iskra
not rated yet Oct 18, 2008
How transparent is the overall solar pannel? Is there a way to make the pannel transparent enough to see through comfortably?

More news stories

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...