Nervous mice lead researchers to regulator of anxiety

Jan 25, 2007

University of Toronto researchers have uncovered a protein in brain receptors that regulates anxiety in mice - a finding that could one day lead to new clinical treatments of pathological anxiety in humans.

In the study, published online in the Public Library of Science, physiology professor Min Zhuo and his team outlined how brain receptors containing a protein called GluR5 help regulate GABA, a chemical messenger in the brain long associated with anxiety and depression. By breeding mice with genetically deleted GluR5 - or injecting a substance to inhibit GluR5 - researchers were able to track the role of the molecule inside the amygdala, an almond-shaped structure in the front of the brain that processes emotion.

"Many people suffer from constant anxiety, which studies have shown to negative effect on overall mental and physical health," says Zhuo, the EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health. "We know that GABA, as the main calming neurotransmitter, plays a crucial role in controlling anxiety and GluR5 plays a role in regulating GABA release."

Researchers used a standard test - the elevated plus maze (EPM) - to determine the GluR5 mice's anxiety levels. The EPM has a high wide-open space and an enclosed space to test a mouse's natural fear of heights. The GluR5 mice spent significantly less time in the open arms of the EPM compared with the wild-type animals, preferring to hide in the enclosed space. Having established the link between GluR5 mice and anxiety, the researchers then wanted to determine whether activation of GluR5 in wild-type mice would decrease anxiety. They injected the mice with ATPA - a molecule that improves GluR5 - 30 minutes before testing in the EPM and found that the animals treated with ATPA spent significantly more time in the open arms. Zhuo says that the study also provides a nice cellular model for studying behavioural anxiety and explains how GluR5 is expressed in the inhibitory neurons - brain cells that decrease electrochemical activity - that may affect the release of GABA in the amygdala.

"Taken together, our results show that the deletion of GluR5 increases anxious behaviour in the EPM while the activation of GluR5 by ATPA decreases anxiety," Zhuo says. "The next step is to find ways of translating these findings into therapeutic drugs and we are working with Innovations at U of T for the translation of this finding into treatments."

Source: University of Toronto

Explore further: OCD patients' brains light up to reveal how compulsive habits develop

add to favorites email to friend print save as pdf

Related Stories

Microbial 'signature' for sexual crimes

4 hours ago

Bacterial communities living on an individual's pubic hairs could be used as a microbial 'signature' to trace their involvement in sexual assault cases, according to a study published in the open access journal Investigative Ge ...

Brazil: Google fined in Petrobras probe

6 hours ago

A Brazilian court says it has fined Google around $200,000 for refusing to intercept emails needed in a corruption investigation at state-run oil company Petrobras.

Atari's 'E.T.' game joins Smithsonian collection

6 hours ago

One of the "E.T." Atari game cartridges unearthed this year from a heap of garbage buried deep in the New Mexico desert has been added to the video game history collection at the Smithsonian.

Sony threatens to sue for publishing stolen emails

6 hours ago

A lawyer representing Sony Pictures Entertainment is warning news organizations not to publish details of company files leaked by hackers in one of the largest digital breaches ever against an American company.

Microsoft builds support over Ireland email case

7 hours ago

Microsoft said Monday it had secured broad support from a coalition of influential technology and media firms as it seeks to challenge a US ruling ordering it to hand over emails stored on a server in Ireland.

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.