Scientists document the development of cancer stem cells

Jan 22, 2007

Xi He, M.D., Research Specialist II, and Linheng Li, Ph.D., Associate Investigator, are the first and last authors, respectively, on a new publication that clarifies how normal stem cells become cancer stem cells and how cancer stem cells can cause the formation of tumors.

The paper, "PTEN-deficient intestinal stem cells initiate intestinal polyposis" was posted to the Nature Genetics Web site on January 21.

The theory that cancer stem cells initiate and drive cancer cell growth has been gaining popularity in both clinical and basic research. Recent studies have identified cancer stem cells and shown that they may cause tumors when transplanted into a secondary host. Until now, however, little was known about the process by which mutations in a stem cell result in primary tumor initiation.

The Li Lab team studied the intestinal system in mice in which one of the human tumor suppressor genes, PTEN, had been deleted. They found that the PTEN/Akt pathway likely regulates stem cell activation by helping control nuclear localization of beta-catenin, the Wnt pathway effector, through phosphorylation of beta-catenin -- including Serine552.

"We found that a loss of PTEN in intestinal epithelial cells accompanied by a loss of PTEN in stromal cells can lead to changes that may increase the number of stem cells and change their position or location," said Dr. Li. "These changes result in crypt fission and budding and can lead to intestinal polyposis and uncontrolled tumor growth."

"All of us were very excited to be part of these efforts to reveal basic features of cancer stem cells," said Dr. He. "What we learned -- that cancer stem cells are a rare population in the tumor mass; that they are slow cycling but more active than normal stem cells; and that cancer stem cells and stromal insertions initiate the process of primary tumorigenesis -- will be influential in our future work."

"Findings from the Li Lab create opportunities to further characterize cancer stem cells and to obtain their molecular signature -- providing important insight into targeting these cells," said Robb Krumlauf, Ph.D., Scientific Director. "This is a fascinating new area of cancer research, and Linheng Li and his colleagues will continue to make important contributions."

Source: Stowers Institute for Medical Research

Explore further: Study succeeds in doubling the life span of mice suffering from premature aging

Related Stories

Nano packages for anti-cancer drug delivery

Mar 18, 2015

Cancer stem cells are resistant to chemotherapy and consequently tend to remain in the body even after a course of treatment has finished, where they can often trigger cancer recurrence or metastasis. A new ...

Sall4 is required for DNA repair in stem cells

Mar 02, 2015

A protein that helps embryonic stem cells (ESCs) retain their identity also promotes DNA repair, according to a study in The Journal of Cell Biology. The findings raise the possibility that the protein, Sall4, ...

A single-cell breakthrough

Mar 18, 2015

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.