Modeling Cell 'Doors' Could Aid Drug Development

Jan 18, 2007

To open the door for better medicines, University of Pittsburgh assistant professor Michael D. Grabe thought he first needed to open the 'doors,' or channels, that allow for passage in and out of cells to see what science is up against when developing new drugs.

A faculty member in the biological sciences department in the School of Arts and Sciences, Grabe created a model of open channels in plant cells to gauge the appearance of closed channels in the human heart and brain, which resemble open plant channels. The results appeared in the online edition of Nature last month and will be published later in print.

Scientists already know the shape of open channels in human and animal cells. With more knowledge on the shape of closed channels in animal cells, scientists will be better able to understand how to control channels with medicine and restore cell function to treat such conditions as epilepsy and heart arrhythmia, Grabe said.

“Unless we know how these small devices work, it's really difficult to re-create how they work together in the body,” he explained. “It's hard to fix a door when you don't have any idea what a hinge looks like or what a hinge is.”

Known as ion channels, the passages that Grabe studied are proteins that open and close so that electric-charged atoms, or ions, can pass into cells. The ion's charge then passes from one cell to the next, allowing the cells to communicate over long distances.

For example, ions spark a chain of electric impulses in human nervous system cells that go from a person thinking, “I want to open my hand,” to the hand actually opening, Grabe said.

“We wouldn't have consciousness if it wasn't for our cells' ability to hold and pass ions,” he addedd.

Ion channels cannot always be open or shut. Those in human hearts and brains, for instance, have voltage sensors that respond to certain levels of electric charge to open and close the channel. Without sensors to close the channels, the cell would run out of energy. Some toxins, such as those from puffer fish and tarantulas, work by clogging the cell's channels and killing the signals, he said.

Similarly, research links mutations in voltage sensors with conditions such as epilepsy, heart arrhythmia, and deafness, Grabe said. These mutations hinder normal activity of the channel itself, the cell, and the whole body system.

Modern drug developers target ion channels because of their prominent role in molecular harmony. According to Grabe, his model gives scientists another reference when mapping the mechanics of ion channels.

“When developing a drug, researchers need to know what the target of the drug looks like,” he said. “My research focused on what ion channels look like when they're closed and when they're open.”

Grabe based his model on a voltage-gated potassium channel from a plant cell. The channel acts in getting potassium to a plant's roots. The leap from plant to human is not fantastical: Grabe's model hinges on the widely held assumptions that voltage-gated channels operate similarly across most of nature and that the open voltage sensor of plant channels looks like the closed voltage sensor of animal cells, he said.

“The real reason we care about these things is not because of the plants but because many people, including myself, believe these ion channels behave and look similarly in different cells,” Grabe said. “They've just been co-opted into different organisms for whatever they need.”

Grabe began working on his model approximately four years ago at the University of California at San Francisco with funding from the National Institutes of Health and Howard Hughes Medical Institute.

The next step is to understand how diseases and mutations manipulate the ion channel and how medicine could counteract that interference, Grabe said. Ultimately, he wants to know why proteins take their shape and how disease alters that process, a distant goal right now.

“These are small pieces in a big puzzle,” Grabe said of his latest research. “But it helps.”

Source: University of Pittsburgh

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Could 'Jedi Putter' be the force golfers need?

just added

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

A full-spectrum Mars simulation in a box

10 minutes ago

There are many reasons why Mars excels at destroying expensive equipment. For one thing, its entire surface is made of partially-magnetized dust. For another, Mars possesses just enough atmosphere so that ...

LADEE mission ends with planned lunar impact

11 minutes ago

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.