Conceptualizing a cyborg

Jan 18, 2007
Conceptualizing a cyborg
Schematic of stretch-grown axons, showing axons growing on electrodes on right and computer-controlled motor pulling axons to left. Blow-up is close-up of stretch-grown axons. Credit: Douglas H. Smith, MD, University of Pennsylvania School of Medicine

Investigators at the University of Pennsylvania School of Medicine describe the basis for developing a biological interface that could link a patient's nervous system to a thought-driven artificial limb. Their conceptual framework - which brings together years of spinal-cord injury research - is published in the January issue of Neurosurgery.

"We're at a junction now of developing a new approach for a brain-machine interface," says senior author Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair at Penn. "The nervous system will certainly rebel if you place hard or sharp electrodes into it to record signals. However, the nervous system can be tricked to accept an interface letting it do what it likes - assimilating new nerve cells into its own network".

To develop the next generation of prosthetics the idea is to use regions of undamaged nervous tissue to provide command signals to drive a device, such as an artificial limb. The challenge is for a prosthesis to perform naturally, relaying two-way communication with the patient's brain. For example, the patient's thoughts could convert nerve signals into movements of a prosthetic, while sensory stimuli, such as temperature or pressure provides feedback to adapt the movements.

The central feature of the proposed interface is the ability to create transplantable living nervous tissue already coupled to electrodes. Like an extension cord, of sorts, the non-electrode end of the lab-grown nervous tissue could integrate with a patient's nerve, relaying the signals to and from the electrode side, in turn connected to an electronic device.

This system may one day be able to return function to people who have been paralyzed by a spinal-cord injury, lost a limb, or in other ways. "Whether it is a prosthetic device or a disabled body function, the mind could regain control," says Smith.

To create the interface, the team used a newly developed process of stretch growth of nerve fibers called axons, previously pioneered in Smith's lab. Two adjacent plates of neurons are grown in a bioreactor. Axons sprout out to connect the neuron populations on each plate. The plates are then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system, until they reached a desired length.

For the interface, one of the plates is an electrical microchip. Because Smith and his team have shown that stretch-grown axons can transmit active electrical signals, they propose that the nervous-tissue interface - through the microchip - could detect and record real-time signals conducted down the nerve and stimulate the sensory signals back through the axons.

In another study, Smith and colleagues showed that these stretch-grown axons could grow when transplanted into a rat model of spinal-cord damage. The team is now is the midst of studies measuring neuronal electrical activity across newly engineered nerve bridges and the restoration of motor activity in experimental animals.

Source: University of Pennsylvania

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Smartphones as a health tool for older adults

Aug 01, 2014

A team of researchers from the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) and the Universitat Autònoma de Barcelona (UAB) is creating a smartphone app that will help older adults to understand ...

Emotion detectors could make driving safer

Mar 14, 2014

Irritation, in particular, can make drivers more aggressive and less attentive. EPFL researchers, in collaboration with PSA Peugeot Citroen, have developed an on-board emotion detector based on the analysis ...

Are bacteria making you hungry?

Dec 19, 2012

Over the last half decade, it has become increasingly clear that the normal gastrointestinal (GI) bacteria play a variety of very important roles in the biology of human and animals. Now Vic Norris of the University of Rouen, ...

Recommended for you

The impact of bacteria in our guts

8 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

8 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

9 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0