Webb scope looks out of this world

Jan 16, 2007

The James Webb Space Telescope (JWST), the orbiting infrared observatory designed to succeed the Hubble Space Telescope, is set to enable fundamental breakthroughs in our understanding of the formation and evolution of galaxies, stars and planetary systems. The project is led by NASA, with major contributions from the European and Canadian Space Agencies. The telescope is scheduled for launch in 2013 for a mission of 5-10 years. NASA's Jonathan Gardner and colleagues' comprehensive description of the scientific goals and technical design of the observatory, which can be used by scientists throughout the world in planning for Webb's investigations and discoveries, was recently published in Springer's peer-reviewed journal Space Science Reviews.

Lead author Jonathan Gardner, Chief of the Laboratory for Observational Cosmology at NASA's Goddard Space Flight Center, said: "Many of the most important scientific results from Hubble were not anticipated before its launch in 1990. Similarly, while this publication outlines the scientific goals we have for Webb at this time, my hope is that Webb will make additional discoveries that we can't even imagine now."

The JWST, named after a former NASA Administrator, will complement and extend the discoveries of the Hubble Space Telescope, with longer wavelength coverage and greatly improved sensitivity. Webb's instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. The longer wavelengths enable JWST to look much closer to the beginning of time and to hunt for the unobserved formation of the first galaxies, as well as look inside dust clouds where stars and planetary systems are forming today. Webb's scientific goals are split into four distinct themes: The End of the Dark Ages - First Light and Reionization; The Assembly of Galaxies; The Birth of Stars and Protoplanetary Systems; and Planetary Systems and the Origins of Life.

The JWST will be launched on an Ariane 5 Enhanced Capability-A rocket into orbit well beyond Earth's Moon, about 1.5 million km (940,000 miles) from the Earth, at the Second Lagrange Point (L2). At that distance from Earth, the telescope will be protected from stray light and heat, yet will remain in an orbit that makes operations and communications easy. Just as importantly, Earth will not obstruct the telescope's view.

The authors conclude: "Regular, competitive peer-reviewed proposal selection will ensure that this international resource will address the most relevant and strongly justified scientific questions, and will leave a legacy of knowledge and discovery for future generations."

The article is freely accessible online via SpringerLink: www.springerlink.com/content/q58315621w03/.

Source: Springer

Explore further: When did galaxies settle down?

add to favorites email to friend print save as pdf

Related Stories

New robotic telescope revolutionizes the study of stars

Oct 22, 2014

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

New radio telescope ready to probe

Oct 21, 2014

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Cold Atom Laboratory creates atomic dance

Oct 20, 2014

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Recommended for you

Fifteen years of NASA's Chandra X-ray observatory

11 minutes ago

This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours.

Confirming a 3-D structural view of a quasar outflow

34 minutes ago

A team of astronomers have observed a distant gravitationally-lensed quasar (i.e., an active galactic nucleus) with the Subaru Telescope and concluded that the data indeed present a 3-D view of the structure ...

Hubble sees 'ghost light' from dead galaxies

15 hours ago

(Phys.org) —NASA's Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened ...

When did galaxies settle down?

22 hours ago

Astronomers have long sought to understand exactly how the universe evolved from its earliest history to the cosmos we see around us in the present day. In particular, the way that galaxies form and develop ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.