Researchers discover surprising drug that blocks malaria

Jan 16, 2007

Northwestern University researchers have discovered how malaria parasites persuade red blood cells to engulf them -- and how to block the invading parasites. The malaria marauders hack into the red cell's signaling system and steal the molecular equivalent of its password to spring open the door to the cell. But researchers have found that a common blood pressure medication – propranolol – jams the signal to prevent the parasite from breaking in.

Scientists had long been perplexed by malaria's ability to hijack red blood cells, then wildly multiply and provoke its life-threatening symptoms.

"This opens the possibility for important new drugs for malaria that won't become resistant. New drugs are urgently needed because the parasite has evolved resistance against virtually all types of commonly used drugs," said Kasturi Haldar, principal investigator for the study and the Charles E. and Emma H. Morrison Professor in the department of pathology at the Feinberg School of Medicine at Northwestern. Sean Murphy, a Medical Sciences Training Program student, is the study's lead author.

The study was published in PLoS Medicine.

Malaria, one of the top three deadliest diseases in the developing world, is resurging worldwide because of drug resistance and the lack of an effective vaccine, Haldar said. Jamaica recently reported an outbreak of malaria after it had been eradicated in that country for 50 years.

A blood-borne illness, malaria is transmitted by infected mosquitoes. The symptoms include high fevers and flu-like symptoms such as chills, headache, muscle aches and fatigue. The disease kills an estimated 2 million people a year, mostly African children under five. It also poses a risk to travelers. An estimated 500 million cases of malaria were expected in 2006.

Commonly used drugs against malaria attack the parasite, but it rapidly changes its molecular structure to become resistant to those drugs. It would be difficult, however, for the malaria parasite to develop resistance to a drug that acts on a person's red blood cells as the blood pressure medication does, Haldar said.

When Haldar and her colleagues tested propranolol in combination with existing anti-malarial drugs in human cell cultures and mice, it reduced the dose of the anti-malarial drugs needed to kill the parasites by tenfold. That's significant because high doses of anti-malarial drugs – increasingly necessary as resistance to them builds -- can be toxic. In addition, blood pressure medication like propranolol is cheap and safe for use even in pregnant women, a group particularly vulnerable to malaria.

"We're working on developing a unique drug that would combine anti-malarial drugs with blood pressure medication. We think it has a high likelihood of success," Haldar said. The next step is human clinical trials.

Source: Northwestern University

Explore further: Unprecedented germ diversity found in remote Amazonian tribe

Related Stories

Crystal studies reveal malaria's weak spots

Apr 03, 2015

(Phys.org)—The World Health Organization's 2014 report on worldwide malaria cases showed that while there has been a significant decrease in the incidence of malaria, overall, there were still 198 million ...

Recommended for you

Bacteria play only a minor role stomach ulcers in cattle

Apr 17, 2015

Scientists at the University of Veterinary Medicine Vienna investigated whether stomach ulcers in cattle are related to the presence of certain bacteria. For their study, they analysed bacteria present in ...

New research reveals how our skeleton is a lot like our brain

Apr 17, 2015

Researchers from Monash University and St Vincent's Institute of Medical Research in Melbourne have used mathematical modelling combined with advanced imaging technology to calculate, for the first time, the number and connectivity ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.