Mixing it up with E. coli

Jan 15, 2007

Poetry in motion may seem like an odd way to describe swimming bacteria, but that's what researchers at Drexel University got when they enlisted Escherichia coli (E. coli) in an effort to tackle a major problem in developing lab-on-a-chip technology.

In a report scheduled for the Feb. 1 issue of ACS' Analytical Chemistry, a semi-monthly journal, Min Jun Kim and Kenneth S. Breuer describe using E. coli to stir and enhance mixing in a controlled fashion in a microchannel. Blood and other medical samples may flow through such channels for analysis in future miniature laboratories etched on silicon chips.

The researchers note, however, that getting those fluids to mix with chemicals in clinical tests and flow poses huge challenges because of difficulties in fabricating tiny pumps.

Researchers thus are exploring biological motors, such as the spinning flagella that E. coli and other bacteria use to swim through fluids. In their experiments, Kim and Breuer harnessed the motion of E. coli flagella to achieve mixing in a fluid. The random motion of the micron-sized bacteria was used to enhance fluid mixing, and by adding chemical stimulants, the researchers were able to control both the direction and the magnitude of the stirring.

Source: American Chemical Society

Explore further: Celebrating 100 years of crystallography

add to favorites email to friend print save as pdf

Related Stories

Engineering team designs 'living materials'

Mar 23, 2014

Inspired by natural materials such as bone—a matrix of minerals and other substances, including living cells—MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving ...

Recommended for you

Water and sunlight the formula for sustainable fuel

27 minutes ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

37 minutes ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

2 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

2 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

New tool identifies therapeutic proteins in a 'snap'

2 hours ago

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

User comments : 0