Mixing it up with E. coli

Jan 15, 2007

Poetry in motion may seem like an odd way to describe swimming bacteria, but that's what researchers at Drexel University got when they enlisted Escherichia coli (E. coli) in an effort to tackle a major problem in developing lab-on-a-chip technology.

In a report scheduled for the Feb. 1 issue of ACS' Analytical Chemistry, a semi-monthly journal, Min Jun Kim and Kenneth S. Breuer describe using E. coli to stir and enhance mixing in a controlled fashion in a microchannel. Blood and other medical samples may flow through such channels for analysis in future miniature laboratories etched on silicon chips.

The researchers note, however, that getting those fluids to mix with chemicals in clinical tests and flow poses huge challenges because of difficulties in fabricating tiny pumps.

Researchers thus are exploring biological motors, such as the spinning flagella that E. coli and other bacteria use to swim through fluids. In their experiments, Kim and Breuer harnessed the motion of E. coli flagella to achieve mixing in a fluid. The random motion of the micron-sized bacteria was used to enhance fluid mixing, and by adding chemical stimulants, the researchers were able to control both the direction and the magnitude of the stirring.

Source: American Chemical Society

Explore further: Science to the rescue of art

add to favorites email to friend print save as pdf

Related Stories

Engineering team designs 'living materials'

Mar 23, 2014

Inspired by natural materials such as bone—a matrix of minerals and other substances, including living cells—MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving ...

Recommended for you

Science to the rescue of art

16 hours ago

Vincent van Gogh's "Sunflowers" are losing their yellow cheer and the unsettling apricot horizon in Edvard Munch's "The Scream" is turning a dull ivory.

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

A dye with tunable optical characteristics

Sep 12, 2014

Researchers from RIKEN and the University of Tokyo have developed an organic dye molecule with tunable light-absorption and color characteristics. This development promises to open the door to the creation ...

User comments : 0