Secrets of the Heart's Signals

Jan 10, 2007

Natalia Trayanova's research team works on understanding the heart's natural electrical signaling process. The director of the Computational Cardiac Electrophysiology Lab, she is a faculty member in the biomedical engineering department.

The subtle rhythms, pulses and patterns of the human heart have fascinated poets, lovers and scientists alike for millennia, yet the heart's deepest secrets remain tightly locked. Tulane biomechanical engineer Natalia Trayanova and her team may have the most incisive insight into the heart's electrical signals, with a three-dimensional virtual model that demonstrates cardiac activity from cellular to organ level.

Trayanova, director of Tulane's Computational Cardiac Electrophysiology Lab and professor of biomedical engineering, published an article in the March 2006 issue of Experimental Physiology describing the model's ability to predict the impact of electric shocks on tissues throughout the heart, a demonstration with implications for the world of heart-disease management.

Her research is dedicated to understanding the heart's natural electrical signaling process and how it interacts with electric shocks delivered by a defibrillator in order to improve the current anti-arrhythmia therapy.

Defibrillators provide an electric pulse that is intended to restore a heart's healthy rhythm. Prior to receiving implantable defibrillators, patients relied on pharmaceuticals with significant and often fatal side effects. Despite the relative improvement represented by current defibrillators, Trayanova says the pulse can cause people pain and discomfort.

In some patients, fear of receiving a pulse at an awkward moment, such as while driving, leads to additional anxiety. Correcting the problem is an issue of pulse energy and timing in relationship to the individual heart.

"Implanted defibrillators are a bit like using heavy explosives to open a door because you don't have the key. We are looking for the key," says Trayanova. "Our goal here is a more effective defibrillator. Over the past decades, defibrillators have become smaller and their batteries last longer but nothing has changed much in terms of the actual mechanisms as far as affecting the electrical activity of the heart."

Trayanova's current model is based on a healthy rabbit heart. Although small, rabbit hearts are very similar in structure to human hearts.

"We have one of the most advanced cardiac models out there," Trayanova explains, adding that her team has already modeled the behavior of ischemic rabbit hearts and are hoping to move on to the impact of infarction. Because defibrillators are not always implanted in healthy hearts, Trayanova's team must also understand the way in which diseased hearts respond.

Source: Tulane University

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Google hits back at rivals with futuristic HQ plan

12 hours ago

Google unveiled plans Friday for a new campus headquarters integrating wildlife and sweeping waterways, aiming to make a big statement in Silicon Valley—which is already seeing ambitious projects from Apple ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.