Researchers discover methods to find 'needles in haystack' in data

Dec 05, 2005

A Case Western Reserve University research team from physics and statistics has recently created innovative statistical techniques that improve the chances of detecting a signal in large data sets. The new techniques can not only search for the "needle in the haystack" in particle physics, but also have applications in discovering a new galaxy, monitoring transactions for fraud and security risk, identifying the carrier of a virulent disease among millions of people or detecting cancerous tissues in a mammogram.

Case faculty members Ramani Pilla and Catherine Loader from statistics and Cyrus Taylor from physics report their findings in the article, "A New Technique for Finding Needles in Haystacks: A Geometric Approach to Distinguishing between a New Source and Random Fluctuations," December 2, in the journal, Physical Review Letters.

"As haystacks of information grow ever larger--and the needles ever smaller--the search for a signal becomes increasingly difficult to find using traditional approaches. There is a need for sophisticated new statistical methods," the researchers report.

Researchers working with large amounts of data encounter the fundamental problem of determining a real signal from random variation in the data. In many practical problems, a suspected signal may only be a small blip in a noisy experimental background.

The Case team discovered a technique that is built on the principle of comparing a set of summary characteristics for any sub region of the observations with the background variation. From these characteristics, attempts are made to find small regions that appear significantly different from the background--a difference that cannot simply be attributed to random chance.

"Methods used in high-energy particle physics problems traditionally have searched for any departure from a background model; that is, anything that is not a haystack," said Pilla, the project leader. "Our method efficiently incorporates information about the type of disorder expected, thereby enabling us to find the signal of interest more accurately."

At the core of the breakthrough is the idea of posing the problem in terms of a "hypothesis-based testing" paradigm to detect statistical disorder in the data. The method further exploits the flexibility behind a long-established geometric formula in creating a technique that significantly enhances the ability to distinguish a signal.

The researchers said the challenge is two-fold: defining efficient test statistics, and determining the critical cut-off. That is, to help the scientist find what is random variation as opposed to what is the signal. The detection problem involves a large number of comparisons, and the researchers caution that experimentalists should not be fooled into false discoveries by random variation.

"The experimenter wants to control the experiment-wise error rate: if there is nothing in the data, then there must be minimal probability of falsely discovering a signal. On the other hand, we want to maximize our chance of discovering any real signal that may be present in the massive data set," said Loader.

"The probabilistic problem associated with this scenario is reduced to one of finding the areas of certain regions on the surface of high-dimensional spheres," explains Pilla.

The Case researchers then exploit the geometric methods pioneered in 1939 by Harold Hotelling and Hermann Weyl. They tested the statistical techniques by using computer simulated particle physics experiments that mimic the real experiments conducted in colliders to demonstrate that the new technique significantly increased detection probabilities.

"In high-energy particle physics and astrophysics problems, chi-square goodness-of-fit tests are widely employed, although they have relatively low power to detect the signal," notes Taylor. "Through my collaborative work with Professors Pilla and Loader, we will be able to develop powerful statistical tests for detecting a signal from noisy data with high probability, a fundamental problem encountered in many scientific disciplines."

Taylor added that "conducting experiments in a particle collider may cost tens of millions of dollars. Improving efficiency in the analysis of experimental results can lead to enormous cost savings. Furthermore, we can obtain the same results with much smaller experiments, or effectively find much smaller departures from the background model."

"Detecting a real signal (the needle) present in random and chaotic data (the haystack) will lead to scientific success," conclude the researchers.

Source: Case Western Reserve University

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Quantum physics secures new cryptography scheme

Mar 12, 2014

The way we secure digital transactions could soon change. An international team has demonstrated a form of quantum cryptography that can protect people doing business with others they may not know or trust ...

Relativity shakes a magnet

Mar 03, 2014

The research group of Professor Jairo Sinova at the Institute of Physics at Johannes Gutenberg University Mainz (JGU), in collaboration with researchers from Prague, Cambridge, and Nottingham, have predicted ...

Recommended for you

CERN: World-record current in a superconductor

22 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...