Scientists discover how body fights to control spread of cancer

Jan 08, 2007

Scientists at the University of Liverpool have found how two molecules fight in the blood to control the spread of cancer cells.

Researchers discovered that a large protein, which forms a protective shield around cancer cells and prevents them from causing secondary tumours, is attacked by a small protein that exists in the blood.

In diseases such as breast, lung and colorectal cancer, infected cells lose growth control and eventually form tumours at these sites. If caught early these tumours can be effectively removed surgically. However, when the cancer cells have invaded the blood, the effectiveness of surgery is reduced.

Cancerous cells that have entered the blood, however, are still prevented from causing further disease by the protective shield of a protein called MUC1 in which the cancerous cells are eventually destroyed by our immune system. Scientists have now discovered how this protective shield is broken down, allowing cancer to spread throughout the body.

Dr Lu-Gang Yu, from the University's School of Clinical Sciences, explains: "MUC1 on the cell surface prevents the cancer cells from attaching to the blood vessel wall which causes secondary tumours. We have discovered that a small protein called galectin-3, attacks MUC1 and breaks up its protective shield, forcing large areas of the cancer cell to become exposed. The exposed areas of the cell allow the cancer to attach to the blood vessel wall. The cancer cells then eventually penetrate the blood wall to form tumours at secondary sites.

"The attachment of cancer cells to the blood vessel wall is one of the key steps in the spread of cancer. It has been known for a few years that galectin-3 concentration is significantly higher in the blood of cancer patients than in healthy people but until now scientists did not know whether this increase played any role in the spread of cancer. Our study indicates that galectin-3 may play a critical role and may have significant implications for future developments of drugs for the treatment of the disease."

Dr Yu’s work is published in the Journal of Biological Chemistry.

Source: University of Liverpool

Explore further: Biologists describe mechanism promoting multiple DNA mutations

add to favorites email to friend print save as pdf

Related Stories

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Recommended for you

Britain to map 100,000 DNA code sequences

2 hours ago

British scientists are to map 100,000 complete DNA code sequences in a project that will make the country a world leader in genetic research on cancer and rare diseases, the prime minister said on Friday.

New paper describes how DNA avoids damage from UV light

17 hours ago

In the same week that the U.S. surgeon general issued a 101-page report about the dangers of skin cancer, researchers at Montana State University published a paper breaking new ground on how DNA – the genetic code in every ...

User comments : 0