Climate models need deeper roots, scientists say

Dec 05, 2005

By soaking up moisture with their roots and later releasing it from their leaves, plants play an active role in regulating the climate. In fact, in vegetated ecosystems, plants are the primary channels that connect the soil to the atmosphere, with plant roots controlling the below-ground dynamics.

“Most climate models assume that roots are shallow – usually within 6 feet of the surface – and that only the soil moisture near the surface can significantly impact the climate,” said Praveen Kumar, a professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign. “Our research shows that it is not just the near surface, but also the deep reservoir of soil moisture that affect terrestrial heat and moisture processes in land-atmosphere interaction.”

A better understanding of this interaction, Kumar said, could lead to more accurate climate models and better predictability.

Using a land surface model, Kumar and graduate student Geremew Amenu are assessing the effects of deep roots on soil moisture and temperature redistribution. Three sites with different vegetation, soil and climate characteristics are being studied: the Mogollon Rim in Arizona, the Edwards Plateau in Texas and the Southern Piedmont in Georgia. Soil depths of up to 30 feet are being investigated.

There are two primary mechanisms by which deep-layer moisture affects the soil surface, Kumar said. First, its temporal variability sets the lower boundary for the transfer of moisture and heat from the surface. And second, this temporal variability influences the uptake of moisture by the plant roots, resulting in the variability of the transpiration and therefore the entire energy balance.

“Our initial results suggest that this second mechanism is predominant, indicating that accurate specification of rooting depth in climate models will play a crucial role in improving predictability,” Kumar said.

Through the process of transpiration, plants remove heat from their immediate environment. The evaporated moisture is carried elsewhere, eventually to fall as precipitation, releasing heat in the process. Through this ongoing energy cycle, plants can influence the climate.

“The variation of soil moisture in the deeper layers is a long term variation that we believe will be highly correlated with long term variations produced by climate models,” Kumar said. “If we are right, we will have better predictability of climate over a longer period of time, to the extent that plants impact the climate system.”

Kumar and Amenu will present the latest results of their modeling efforts, and the implications for climate modeling, at the American Geophysical Union meeting in San Francisco, Dec. 5-9. Their work was funded by the National Oceanic and Atmospheric Administration.

Source: University of Illinois at Urbana-Champaign

Explore further: Bad weather delays SpaceX launch with 3-D printer

add to favorites email to friend print save as pdf

Related Stories

How much effect does a microhabitat change truly have?

Sep 05, 2014

To understand the behavioral patterns of all organisms co-existing together, we must examine our ecosystems, habitats, and even microhabitats. Even variation in climate change or human influence at small scales can ultimately ...

Drying Sierra meadows could worsen California drought

Aug 21, 2014

Carpeting the high valleys of Yosemite and other parts of the Sierra Nevada, mountain meadows are more than an iconic part of the California landscape. The roughly 17,000 high altitude meadows help regulate ...

Recommended for you

Internet moguls Musk, Bezos shake up US space race

23 hours ago

The space race to end America's reliance on Russia escalated this week with a multibillion dollar NASA award for SpaceX's Elon Musk and an unexpected joint venture for Blue Origin's Jeff Bezos.

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

User comments : 0