Nanoimprint lithography continues to advance

May 12, 2004
Nanoimpint
An nanoimprint mold made by Prof. Stephen Chou group at Princeton University

Nanoimprint is an emerging lithographic technology that promises high-throughput patterning of nanostructures. Based on the mechanical embossing principle, nanoimprint technique can achieve pattern resolutions beyond the limitations set by the light diffractions or beam scatterings in other conventional techniques. The article in the last issue of Journal of Physics D: Applied Physics by L. Jay Guo from The University of Michigan, reviews the basic principles of nanoimprint technology and some of the recent progress in this field.

Imprint lithography uses polymers that harden into patterns when exposed to ultraviolet light through a 1:1 proximity mask. The patterns on the template are written with an electron-beam system at the same line width as the pattern on the wafer, rather than at the 4x reduction possible with conventional optical lithography. Previously used only in making simple non-electronic structures such as optical gratings, the technique can make electronics by nanoimprinting multiple transistors with features two-thirds the size of those found on even the most advanced commercial chips. Even Intel is reportedly investigating the technology.

Nanoimprinting technique has enabled a parallel nanoscale processing capability with simple equipment. The simplicity of this method has made it appealing to researchers in various fields. Imprint lithography is relatively inexpensive because it avoids costly optics, as well as cumbersome enhancement techniques like phase-shift masks. The machines cost far less than today's step-and-scan systems.

Nano-imprint lithography is currently slated for the 32-nm node on the ITRS roadmap. The 32-nm node is expected to emerge in the 2009 time frame. Although no semiconductor firms make their commercial electronics using nanoimprinting, several have nanoimprinting tools in their research laboratories, and a number of firms sell the tools, including Molecular Imprints, EV Group, Obducat, and Nanonex.

If the defect density can be made low enough for volume production of large ICs and the current rate of progress on nanoimprint technology is maintained, this technique might even be able to challenge EUV.

Explore further: Greenland darkening to continue, predicts CCNY expert Marco Tedesco

Related Stories

OrangeSec pair said Cortana visited Android

2 hours ago

Can, did, Cortana work on Android? A talked-about act at droidcon 2015: a presentation titled "Cracking Cortana." The OrangeSec team arrived at the Turin, Italy, event to show their work in a CortanaProxy ...

Mercury MESSENGER nears epic mission end

4 hours ago

A spacecraft that carries a sensor built at the University of Michigan is about to crash into the planet closest to the sun—just as NASA intended.

DOJ, FBI acknowledge flawed testimony from unit

5 hours ago

The Justice Department and FBI have formally acknowledged that nearly every examiner in the FBI Laboratory's microscopic hair comparison unit gave flawed testimony in almost all trials in which they offered evidence against ...

Dawn glimpses Ceres' north pole

5 hours ago

After spending more than a month in orbit on the dark side of dwarf planet Ceres, NASA's Dawn spacecraft has captured several views of the sunlit north pole of this intriguing world. These images were taken ...

Recommended for you

Boron-based atomic clusters mimic rare-earth metals

Apr 17, 2015

Rare Earth elements, found in the f-block of the periodic table, have particular magnetic and optical properties that make them valuable commodities. This has been particularly true over the last thirty years ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.