Nanoimprint lithography continues to advance

May 12, 2004
Nanoimpint
An nanoimprint mold made by Prof. Stephen Chou group at Princeton University

Nanoimprint is an emerging lithographic technology that promises high-throughput patterning of nanostructures. Based on the mechanical embossing principle, nanoimprint technique can achieve pattern resolutions beyond the limitations set by the light diffractions or beam scatterings in other conventional techniques. The article in the last issue of Journal of Physics D: Applied Physics by L. Jay Guo from The University of Michigan, reviews the basic principles of nanoimprint technology and some of the recent progress in this field.

Imprint lithography uses polymers that harden into patterns when exposed to ultraviolet light through a 1:1 proximity mask. The patterns on the template are written with an electron-beam system at the same line width as the pattern on the wafer, rather than at the 4x reduction possible with conventional optical lithography. Previously used only in making simple non-electronic structures such as optical gratings, the technique can make electronics by nanoimprinting multiple transistors with features two-thirds the size of those found on even the most advanced commercial chips. Even Intel is reportedly investigating the technology.

Nanoimprinting technique has enabled a parallel nanoscale processing capability with simple equipment. The simplicity of this method has made it appealing to researchers in various fields. Imprint lithography is relatively inexpensive because it avoids costly optics, as well as cumbersome enhancement techniques like phase-shift masks. The machines cost far less than today's step-and-scan systems.

Nano-imprint lithography is currently slated for the 32-nm node on the ITRS roadmap. The 32-nm node is expected to emerge in the 2009 time frame. Although no semiconductor firms make their commercial electronics using nanoimprinting, several have nanoimprinting tools in their research laboratories, and a number of firms sell the tools, including Molecular Imprints, EV Group, Obducat, and Nanonex.

If the defect density can be made low enough for volume production of large ICs and the current rate of progress on nanoimprint technology is maintained, this technique might even be able to challenge EUV.

Explore further: Breakthrough in light sources for new quantum technology

add to favorites email to friend print save as pdf

Related Stories

New NIST microscope sees what others can't

May 07, 2014

Microscopes don't exactly lie, but their limitations affect the truths they can tell. For example, scanning electron microscopes (SEMs) simply can't see materials that don't conduct electricity very well, ...

Recommended for you

Breakthrough in light sources for new quantum technology

2 hours ago

One of the most promising technologies for future quantum circuits are photonic circuits, i.e. circuits based on light (photons) instead of electrons (electronic circuits). First, it is necessary to create ...

A new, tunable device for spintronics

13 hours ago

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

Watching the structure of glass under pressure

14 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

17 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

18 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0