Molecular anatomy of influenza virus detailed

Dec 30, 2006

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health in Bethesda, Md., and colleagues at the University of Virginia in Charlottesville have succeeded in imaging, in unprecedented detail, the virus that causes influenza.

A team of researchers led by NIAMS' Alasdair Steven, Ph.D., working with a version of the seasonal H3N2 strain of influenza A virus, has been able to distinguish five different kinds of influenza virus particles in the same isolate (sample) and map the distribution of molecules in each of them. This breakthrough has the potential to identify particular features of highly virulent strains, and to provide insight into how antibodies inactivate the virus, and how viruses recognize susceptible cells and enter them in the act of infection.

"Being able to visualize influenza virus particles should boost our efforts to prepare for a possible pandemic flu attack," says NIAMS Director Stephen I. Katz, M.D., Ph.D. "This work will allow us to 'know our enemy' much better."

One of the difficulties that has hampered structural studies of influenza virus is that no two virus particles are the same. In this fundamental respect, it differs from other viruses; poliovirus, for example, has a coat that is identical in each virus particle, allowing it to be studied by crystallography.

The research team used electron tomography (ET) to make its discovery. ET is a novel, three-dimensional imaging method based on the same principle as the well-known clinical imaging technique called computerized axial tomography, but it is performed in an electron microscope on a microminiaturized scale.

Source: NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases

Explore further: Investigators show how immune cells are 'educated' not to attack beneficial bacteria

Related Stories

Recommended for you

Fat signals control energy levels in the brain

Apr 23, 2015

An enzyme secreted by the body's fat tissue controls energy levels in the brain, according to new research at Washington University School of Medicine in St. Louis. The findings, in mice, underscore a role ...

Human tape worm drug shows promise against MRSA in lab

Apr 23, 2015

A new study provides evidence from lab experiments that a drug already used in people to fight tapeworms might also prove effective against strains of the superbug MRSA, which kills thousands of people a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.