Researchers identify new drug targets for cancer

Dec 28, 2006

Solving a 100-year-old genetic puzzle, researchers at the University of California, San Diego (UCSD) School of Medicine have determined that the same genetic mechanism that drives tumor growth can also act as a tumor suppressor. Their findings could lead to new drug targets for cancer therapies.

In a study published in the January 1 issue of Cancer Cell, Don Cleveland, Ph.D., UCSD Professor of Medicine, Neurosciences and Cellular and Molecular Medicine and member of the Ludwig Institute for Cancer Research, looked at a common characteristic of cancer cells called aneuploidy. Aneuploidy – the occurrence of one or more extra or missing chromosomes – was first proposed as the cause of cancerous tumors nearly a century ago by German biologist Theodor Boveri, but his hypothesis had remained unproven.

"We questioned whether the wrong number of chromosomes contributed to tumor growth, or was a consequences of the accrued damage in cancerous cells," said Cleveland.

To find out, researchers in the Cleveland lab created and analyzed mouse models with cells having a highly variable number of chromosomes to discover if such aneuploidy made the mice more tumor-prone.

"We found that, with age, having cells which inherited the wrong composition of chromosomes resulted in a larger number of spontaneous tumors," said Cleveland. But the more unexpected feature of their findings was discovered when the research team added other genetic errors to mice with a high rate of aneuploidy – tumor development was slowed.

The UCSD researchers also studied mice that were missing a tumor suppressor gene, which is a gene that acts to prevent cell growth. If a mutation occurs in this gene, it makes the individual – or in this case, the mouse – more susceptible to the development of cancer in the tissue in which the mutation occurs.

"When we created mice missing a tumor suppressor gene that also had a high rate of aneuploidy, tumor development was actually sharply delayed," said Cleveland, adding that in tumors, "there is always a balance between uncontrolled growth and death."

The researchers hope that, in the future, they can develop what they are calling "aneuploidy therapy." Drugs that inhibit accurate delivery of the right number of chromosomes to each new cell, resulting in aneuploidy, would be used to destroy tumors caused by mutations in the tumor suppressors.

"This study opens up a whole series of potential therapeutic targets for cancer," said Beth A.A. Weaver, of the Ludwig Institute for Cancer Research and UCSD Department of Cellular and Molecular Medicine, the study's first author. "By increasing the level of genetic damage, we can kill those tumor cells."

Source: University of California - San Diego

Explore further: New tool to probe cancer's molecular make-up

add to favorites email to friend print save as pdf

Related Stories

Researchers prove key cancer theory

Dec 07, 2009

Mayo Clinic researchers have proven the longstanding theory that changes in the number of whole chromosomes -- called aneuploidy -- can cause cancer by eliminating tumor suppressor genes. Their findings, which appear in the ...

Are cancers newly evolved species?

Jul 26, 2011

(PhysOrg.com) -- Cancer patients may view their tumors as parasites taking over their bodies, but this is more than a metaphor for Peter Duesberg, a molecular and cell biology professor at the University of ...

Exploiting cancer cells' weaknesses

Mar 08, 2011

When designing new cancer drugs, biologists often target specific gene mutations found only in cancer cells, or in a subset of cancer cells. A team of MIT biologists is now taking a slightly different approach, ...

Surprising similarities between human and zebrafish tumors

Oct 07, 2010

Most human cells have 23 pairs of chromosomes, the large bundles of DNA that store all of a cell’s genetic information. However, scientists realized more than 100 years ago that tumor cells usually have extra copies ...

Recommended for you

Exercising restraint to stall tumor growth

2 hours ago

Many proteins undergo an assembly line-style process of glycosylation as they travel from a cellular structure called the endoplasmic reticulum (ER) to the Golgi apparatus and on through its various compartments, ...

New tool to probe cancer's molecular make-up

Aug 26, 2014

Scientists have shown how to better identify and measure vital molecules that control cell behaviour – paving the way for improved tools for diagnosis, prediction and monitoring of cancer.

Mayo Clinic offers at-home colon cancer test

Aug 26, 2014

Mayo Clinic is taking another step toward making detection of colorectal cancer as convenient as possible, announcing Monday an at-home kit that arrives and is sent back in the mail, stool sample included.

User comments : 0