First Images from Hinode Offer New Clues About Our Violent Sun

Dec 22, 2006
First Images from Hinode Offer New Clues About Our Violent Sun
This image of the sun was captured by Hinode's X-Ray Telescope, one of three primary instruments on the international science satellite. Credit: JAXA/NAOJ

Instruments aboard a Japan Aerospace Exploration Agency satellite named Hinode, or "Sunrise," are returning extraordinary new images of our sun. The international mission to study the forces that drive the violent, explosive power of the sun launched from Japan in September.

Hinode is circling Earth in a polar flight path (a "sun-synchronous" orbit) that allows the spacecraft's instruments to remain in continuous sunlight for nine months each year. An international team of scientists and engineers is performing the calibration and checkout of Hinode's three primary instruments: the Solar Optical Telescope, the X-ray Telescope and the Extreme Ultraviolet Imaging Spectrometer. NASA made significant contributions to the development of these scientific instruments.

"The checkout phase is crucial because it allows controllers to confirm the spacecraft's instruments are working properly," said John M. Davis, NASA project scientist at the Marshall Space Flight Center, Huntsville, Ala. "As part of this checkout, we've been treated to some remarkable images of the sun."

Hinode's X-ray Telescope has captured unprecedented details in solar active region corona, the sun's outer atmosphere. The corona is the spawning ground for explosive solar activity, such as coronal mass ejections. Powered by the sun's magnetic field, these violent atmospheric disturbances of the sun can be of danger to space travelers, disruptive to orbiting satellites and can cause power grid problems on Earth.

Hinode's Solar Optical Telescope has delivered images that show greatly magnified views of the sun's surface. These images are revealing new details about solar convection. Solar convection is the process that drives the rising and falling of gases in the lowest atmospheric region, the photosphere. In addition, the Solar Optical Telescope is the first space-borne instrument to measure the strength and direction of the sun's magnetic field.

The Solar Optical Telescope images and magnetic maps uncover highly dynamic, intermittent nature of the sun's lower atmosphere - chromosphere. It is also providing revolutionary views on various solar phenomena from heating of solar atmosphere to generation of magnetic fields and magnetic reconnection.

Hinode's third primary instrument is the Extreme-Ultraviolet Imaging Spectrometer. The instrument has provided measurements of the speed of solar material, along with information that will help scientists diagnose the temperature and density of solar outer atmosphere. The Extreme-Ultraviolet Imaging Spectrometer provides a crucial link between the other two instruments aboard Hinode since it measures the layers that separate the photosphere from the corona: the chromosphere and the chromosphere-corona transition region.

"These first engineering images have given us a fascinating preview of what's on the horizon once the science phase of the mission begins, sometime in late December," Davis said. "Once we enter that phase, the focus will shift from calibration to using the instruments for making continuous, simultaneous observations of specific solar features."

By performing coordinated measurements with all three instruments, Hinode will help scientists observe how changes in the magnetic field at the sun's surface spread through the outer layers of the solar atmosphere. These first images leave no doubt that Hinode observations will revolutionize the knowledge of our nearest and most important star, the sun.

The Hinode mission, known as "Solar-B" before launch, is led by the Japan Aerospace Exploration Agency (JAXA). The collaborative mission includes the space agencies of Japan, the U.S., Great Britain and Europe. Marshall managed the development of the scientific instrumentation provided by NASA, academia and industry. Hinode's operations center is located at JAXA's facility in Sagamihara, Japan.

Source: NASA

Explore further: Mysterious molecules in space

add to favorites email to friend print save as pdf

Related Stories

The dual personality of comet 67P/C-G

Jul 18, 2014

(Phys.org) —This week's images of comet 67P/Churyumov-Gerasimenko reveal an extraordinarily irregular shape. We had hints of that in last week's images and in the unscheduled previews that were seen a few ...

Is our solar system weird?

Jul 18, 2014

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we've discovered in the Milky Way so far?

Recommended for you

Evidence of a local hot bubble carved by a supernova

2 hours ago

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

Astronomers measure weight of galaxies, expansion of universe

10 hours ago

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

21 hours ago

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

User comments : 0