How blood flow dictates gene expression

Dec 20, 2006
How blood flow dictates gene expression
Klf2 is expressed (red) on the flow side (arrows) of developing mitral and aortic valves in a 14-day-old mouse embryo. Credit: University of Pennsylvania School of Medicine

Researchers at the University of Pennsylvania School of Medicine have pinpointed a key regulatory protein that translates blood flow into gene expression. The investigators showed that in a model of mouse embryonic development a transcription factor called Klf2, which resides in cells that line blood vessels, is activated by rapid, pulsed blood flow, as reported in the December issue of Developmental Cell. Understanding Klf2's role in blood vessel and muscle biology could help with fighting atherosclerosis.

"We always knew that there had to be this line of communication from the vessel lining, or endothelium, to the smooth muscles, which never sees a blood cell," says senior author Mark Kahn, MD, Associate Professor of Medicine. "That's where Klf2 fits: This is the first time, at a molecular level, that this chain has been demonstrated in an animal."

Swirling eddies of blood form when vessels branch, much like when a river divides. Atherosclerosis typically forms at these sites of so-called disturbed flow as opposed to regions of rapid blood flow through the main vessels. This relationship between atherosclerosis and flow has been known for decades. More recently, tissue- culture studies have shown that Klf2 is activated by increased blood flow, or "fluid sheer stress."

Indeed, in this study Kahn; first author John S. Lee, MD, PhD, Instructor in the Department of Medicine; and colleagues show that the expression of Klf2 in a developing mouse embryo mirrors events in previous tissue-culture studies. They found that Klf2 is expressed on the high-flow side of developing mitral and aortic valves in the heart of a 14-day-old embryo.

The researchers surmise that the mechanical stimulus of blood flowing in a vessel leads to the upregulation of Klf2, which either activates or represses genes that control smooth muscle tone, that is the caliber of the vessel. (Tone is governed by how much a muscle contracts or relaxes.) These genes encode proteins that are either secreted or are on the cell surface of the endothelium and so influence how smooth-muscle cells contract or relax.

The researchers suggest that when Klf2 is expressed, smooth muscle cells lining the blood vessels maintain their ability to regulate vessel tone. However, when Klf2 is genetically deleted, or "knocked out," from the blood vessels of mouse embryos, they had an abnormally high cardiac output, as measured by ultrasound, while the overall structure of their blood vessels was normal. These findings implicate loss of vessel tone as the primary defect in Klf2 knockout mice.

Now that Klf2 has been established as an important regulator of blood flow in live animals and is required for the development of a healthy cardiovascular system, the next step is to elucidate the role of Klf2 in normal adult blood vessels and in the pathogenesis of vascular diseases, such as atherosclerosis.

Source: University of Pennsylvania School of Medicine

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Research reveals how blood flow force protects blood vessels

Jan 28, 2010

It is second nature for most of us that exercise protects against heart attack and stroke, but researchers have spent 30 years unraveling the biochemistry behind the idea. One answer first offered by researchers at the University ...

Study details how diabetes drives atherosclerosis

Mar 13, 2008

Researchers have discovered how diabetes, by driving inflammation and slowing blood flow, dramatically accelerates atherosclerosis, according to research to be published in the March 14 edition of the journal Circulation Re ...

Recommended for you

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Study says we're over the hill at 24

(Medical Xpress)—It's a hard pill to swallow, but if you're over 24 years of age you've already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.