Celestial Season's Greetings from Hubble

Dec 19, 2006
Celestial Season's Greetings from Hubble
This image of star-formation region LH 95 was taken in March 2006 with Hubble´s Advanced Camera for Surveys. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: D. Gouliermis (Max Planck Institute for Astronomy, Heidelberg)

Swirls of gas and dust reside in this ethereal-looking region of star formation imaged by NASA's Hubble Space Telescope. This majestic view, located in the Large Magellanic Cloud (LMC), reveals a region where low-mass, infant stars and their much more massive stellar neighbors reside. A shroud of blue haze gently lingers amid the stars.

Known as LH 95, this is just one of the hundreds of star-forming systems, called associations, located in the LMC some 160,000 light-years distant. Earlier ground-based observations of such systems had only allowed astronomers to study the bright blue giant stars present in these regions. With Hubble's resolution, the low-mass stars can now be analyzed, which will allow for a more accurate calculation of their ages and masses.

This detailed view of the star-forming association LH 95 was taken with Hubble's Advanced Camera for Surveys and provides an extraordinarily rich sample of newly formed low-mass stars. The LMC is a galaxy with relatively small amounts of elements heavier than hydrogen, giving astronomers an insight into star formation in environments different than our Milky Way.

The largest stars within LH 95 - those with at least three times the mass of the Sun - generate strong stellar winds and high levels of ultraviolet radiation that heat the surrounding interstellar gas. The result is a bluish nebula of glowing hydrogen that continues to expand out into the molecular cloud that originally collapsed to form these massive stars.

Some dense parts of this star-forming region are intact despite the stellar winds, and can still be seen as dark dusty filaments in the picture. Such dust lanes absorb parts of the blue light from the stars behind them, making them appear redder. Other parts of the molecular cloud have already contracted to turn into glowing groups of infant stars, the fainter of which have a high tendency to cluster. This deep Hubble image also reveals several large spiral and distant galaxies decorating the background of LH 95.

This image of LH 95 is a composite of two filters that localize visible (V) and infrared (I) light. Because of the color assignments chosen, doubly ionized hydrogen, which is visible within the V filter, appears bluish. The choice of color assignment helps to distinguish hot bright blue stars from cooler, less luminous red stars.

Source: Space Telescope Science Institute

Explore further: What lit up the universe?

add to favorites email to friend print save as pdf

Related Stories

Why conspiracy theorists won't give up on MH17 and MH370

just added

A huge criminal investigation is underway in the Netherlands, following the downing of flight MH17. Ten Dutch prosecutors and 200 policemen are involved in collecting evidence to present at the International Criminal Court in the Hague. The inv ...

Twitter tries to block images of Foley killing

9 minutes ago

Twitter is trying to block the spread of gruesome images of the beheading of journalist James Foley by Islamic State militants, while a movement to deny his killers the publicity they crave is also gaining ...

New generation is happy for employers to monitor them on social media

10 minutes ago

Will employers in the future watch what their staff get up to on social media? Allowing bosses or would-be employers a snoop around social media pages is a growing trend in the US, and now a new report from PricewaterhouseCoopers and the Said Business School suggest ...

Researchers discover new strategy germs use to invade cells

30 minutes ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Vibrational motion of a single molecule measured in real time

40 minutes ago

For the first time, chemists have succeeded in measuring vibrational motion of a single molecule with a femtosecond time resolution. The study reveals how vibration of a single molecule differs from the behaviour of larger ...

Recommended for you

What lit up the universe?

5 hours ago

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

Eta Carinae: Our Neighboring Superstars

13 hours ago

(Phys.org) —The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the Sun, it ...

Best view yet of merging galaxies in distant universe

17 hours ago

Using the Atacama Large Millimeter/submillimeter Array, and other telescopes, an international team of astronomers has obtained the best view yet of a collision that took place between two galaxies when the ...

Image: Hubble stirs up galactic soup

Aug 25, 2014

(Phys.org) —This new NASA/ESA Hubble Space Telescope image shows a whole host of colorful and differently shaped galaxies; some bright and nearby, some fuzzy, and some so far from us they appear as small ...

Spectacular supernova's mysteries revealed

Aug 22, 2014

(Phys.org) —New research by a team of UK and European-based astronomers is helping to solve the mystery of what caused a spectacular supernova in a galaxy 11 million light years away, seen earlier this ...

Supernova seen in two lights

Aug 22, 2014

(Phys.org) —The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA's Spitzer Space Telescope and Chandra ...

User comments : 0