Physics Reveals the Key to a Great Golf Swing

Dec 18, 2006 feature
Physics Reveals the Key to a Great Golf Swing
The simple double-pendulum model of the golf swing, showing key angles, lengths, and masses. For instance, m1, m2, and m3 are the masses of the arms/hands, club head, and ball, respectively; L1 is the length of the arms/hands, and L2 is the length of the club head). (a) The system before the club is released and (b) when the club is about to strike the ball.

What happens when a golf-loving researcher injures a shoulder and can't play for three months? Rod White, a metrologist (measurement scientist), used the spare time off the course to undertake an analysis that revealed the foundation of an effective golf swing. As it turns out, it's all in the wrists.

“Even the most able golfers experience occasions when a ball hit deliberately with little effort inexplicably travels further than expected,” said White, of technology company Industrial Research Ltd. in Lower Hutt, New Zealand, to PhysOrg.com. “But there is an explanation. A double pendulum model, which represents the golf swing reduced to its simplest elements, explains this effect and how to make a swing more efficient.”

A double pendulum consists of one pendulum tacked on to the end of another. The upper pendulum swings from a fixed pivot point and the lower pendulum swings from the end of the upper one. In golf, the equivalent components are the shoulders (acting as the fixed pivot), arms and hands (the upper pendulum), and the club shaft and club head (the lower pendulum).

There are several factors influencing the efficiency of a golf swing. Among them are the length of the club, the length of the player's arms, the mass of the club head, the wrist-cock angle – how far backward the wrists are bent during the swing – and whether the wrists actively twist during the swing, resulting in wrist torque.

White's analysis is the first to consider wrist-cock angle. His model is also very simple in a Physics 101 kind of way, explaining the mechanics of the golf swing in terms of the club's changing moment of inertia. These two points distinguish his work from similar analyses by C.B. Daish1 and the late University of Nebraska physicist Theodore Jorgensen2.

White shows that the energy and momentum of the arm-club system are redistributed during the swing as a direct result of the uncocking of the wrists that takes place before the club strikes the ball.

“As the wrists uncock near the bottom of the swing, the club head and the hands are moving in different directions, which means the club pulls against the hands and slows them down,” White said. “This means, in turn, that the kinetic energy in the shoulders and arms is transferred to the club. Without wrist-cock, most of the kinetic energy stays in the arms and shoulders and the swing is inefficient. Best of all, the golfer does not have to do any extra work to make the transfer happen.” Thus, wrist-cock is the make-or-break factor in a good golf swing.

The full range of motion of the double pendulum is described by two complicated equations. In fact, White says, they are too complicated to be of much help in a study of the golf swing. “They obscure the basic mechanism by which the golf swing derives its efficiency.”

He simplified the equations by removing the components that account for radial motion – motion away from the shoulders, such as what would happen if the club handle slipped down slightly in the golfer's hands during the swing. There are two key points in the swing where radial motion does not factor in: at the end the first half of the swing when the golfer is holding the club at a fixed wrist-cock angle and about to release the club, and the instant before the club head strikes the ball, when the golfer's arms and the club line up vertically. By using these two snapshots, White broke the swing down into a much more basic and manageable system.

“This model helps explain why learning a good swing can be difficult,” he concludes. “Both the extraordinary effectiveness of wrist cock in gaining distance (without having to do additional work) and the loss in distance that occurs with the application of wrist torque are counter-intuitive.”

Citation: Rod White, “On the efficiency of the golf swing,” Am. J. Phys., 74 1088-1094 (2006)

References:

1 C.B. Daish, The Physics of Ball Games. (London: The English University Press, 1972)
2 Theodore P. Jorgensen, The Physics of Golf. (Melville, NY: The American Institute of Physics, 1994)

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: New approach to form non-equilibrium structures

add to favorites email to friend print save as pdf

Related Stories

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Titanium clubs can cause golf course fires, study finds

Mar 19, 2014

Titanium alloy golf clubs can cause dangerous wildfires, according to UC Irvine scientists. When a club coated with the lightweight metal is swung and strikes a rock, it creates sparks that can heat to more than 3,000 degrees ...

Motorola studying modular smartphone

Oct 30, 2013

When it comes to mobile applications, consumers can customize their phones with just a few taps. Motorola Mobility wants to make it that easy to personalize a gadget's hardware.

In baseball, bigger still better

Jul 08, 2013

Max Scherzer leads Major League Baseball in wins. As a pitcher for the Detroit Tigers, he hasn't lost a game this season. His 6-foot, 3-inch frame is a telling example of constructal-law theory, said Duke ...

Recommended for you

New approach to form non-equilibrium structures

5 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

7 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

11 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

11 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0