# Physics Reveals the Key to a Great Golf Swing

##### Dec 18, 2006 feature

What happens when a golf-loving researcher injures a shoulder and can't play for three months? Rod White, a metrologist (measurement scientist), used the spare time off the course to undertake an analysis that revealed the foundation of an effective golf swing. As it turns out, it's all in the wrists.

“Even the most able golfers experience occasions when a ball hit deliberately with little effort inexplicably travels further than expected,” said White, of technology company Industrial Research Ltd. in Lower Hutt, New Zealand, to PhysOrg.com. “But there is an explanation. A double pendulum model, which represents the golf swing reduced to its simplest elements, explains this effect and how to make a swing more efficient.”

A double pendulum consists of one pendulum tacked on to the end of another. The upper pendulum swings from a fixed pivot point and the lower pendulum swings from the end of the upper one. In golf, the equivalent components are the shoulders (acting as the fixed pivot), arms and hands (the upper pendulum), and the club shaft and club head (the lower pendulum).

There are several factors influencing the efficiency of a golf swing. Among them are the length of the club, the length of the player's arms, the mass of the club head, the wrist-cock angle – how far backward the wrists are bent during the swing – and whether the wrists actively twist during the swing, resulting in wrist torque.

White's analysis is the first to consider wrist-cock angle. His model is also very simple in a Physics 101 kind of way, explaining the mechanics of the golf swing in terms of the club's changing moment of inertia. These two points distinguish his work from similar analyses by C.B. Daish1 and the late University of Nebraska physicist Theodore Jorgensen2.

White shows that the energy and momentum of the arm-club system are redistributed during the swing as a direct result of the uncocking of the wrists that takes place before the club strikes the ball.

“As the wrists uncock near the bottom of the swing, the club head and the hands are moving in different directions, which means the club pulls against the hands and slows them down,” White said. “This means, in turn, that the kinetic energy in the shoulders and arms is transferred to the club. Without wrist-cock, most of the kinetic energy stays in the arms and shoulders and the swing is inefficient. Best of all, the golfer does not have to do any extra work to make the transfer happen.” Thus, wrist-cock is the make-or-break factor in a good golf swing.

The full range of motion of the double pendulum is described by two complicated equations. In fact, White says, they are too complicated to be of much help in a study of the golf swing. “They obscure the basic mechanism by which the golf swing derives its efficiency.”

He simplified the equations by removing the components that account for radial motion – motion away from the shoulders, such as what would happen if the club handle slipped down slightly in the golfer's hands during the swing. There are two key points in the swing where radial motion does not factor in: at the end the first half of the swing when the golfer is holding the club at a fixed wrist-cock angle and about to release the club, and the instant before the club head strikes the ball, when the golfer's arms and the club line up vertically. By using these two snapshots, White broke the swing down into a much more basic and manageable system.

“This model helps explain why learning a good swing can be difficult,” he concludes. “Both the extraordinary effectiveness of wrist cock in gaining distance (without having to do additional work) and the loss in distance that occurs with the application of wrist torque are counter-intuitive.”

Citation: Rod White, “On the efficiency of the golf swing,” Am. J. Phys., 74 1088-1094 (2006)

References:

1 C.B. Daish, The Physics of Ball Games. (London: The English University Press, 1972)
2 Theodore P. Jorgensen, The Physics of Golf. (Melville, NY: The American Institute of Physics, 1994)

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: Boron-based atomic clusters mimic rare-earth metals

## Related Stories

#### Review: Optishot2 brings your golf game indoors

Mar 06, 2015

Golfers are a devoted lot. Taking time out of your week to spend half a day outdoors chasing a ball around is a commitment.

#### Sporty tech gadgets put data in users' hands

Jan 08, 2015

Olympic cycling medalist Dotsie Bausch is hooked on data, and she wants everyone to know it.

#### Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

#### Titanium clubs can cause golf course fires, study finds

Mar 19, 2014

Titanium alloy golf clubs can cause dangerous wildfires, according to UC Irvine scientists. When a club coated with the lightweight metal is swung and strikes a rock, it creates sparks that can heat to more than 3,000 degrees ...

#### Technology aims for perfect jump shot, golf swing (Update)

Jan 10, 2014

A connected basketball promises to improve your jump shot. Embedded sensors which gather and analyze data offer hope for a better swing in golf, baseball or tennis.

#### Motorola studying modular smartphone

Oct 30, 2013

When it comes to mobile applications, consumers can customize their phones with just a few taps. Motorola Mobility wants to make it that easy to personalize a gadget's hardware.

## Recommended for you

#### European physicist discusses Higgs boson at Brown University

8 hours ago

The head of the European Organization for Nuclear Research says the historic 2012 discovery of the Higgs boson particle and the particle accelerator that detected it are getting scientists closer to understanding the creation ...

#### Boron-based atomic clusters mimic rare-earth metals

Apr 17, 2015

Rare Earth elements, found in the f-block of the periodic table, have particular magnetic and optical properties that make them valuable commodities. This has been particularly true over the last thirty years ...

#### Detector at the South Pole explores the mysterious neutrinos

Apr 16, 2015

Neutrinos are a type of particle that pass through just about everything in their path from even the most distant regions of the universe. The Earth is constantly bombarded by billions of neutrinos, which ...

#### Light in a spin: Researchers demonstrate angular accelerating light

Apr 15, 2015

Light must travel in a straight line and at a constant speed, or so the laws of nature suggest. Now, researchers at the University of the Witwatersrand in Johannesburg have demonstrated that laser light traveling ...

#### Accurately counting ions from laboratory radiation exposure

Apr 15, 2015

Thermoluminescence is used extensively in archaeology and the earth sciences to date artifacts and rocks. When exposed to radiation, quartz emits light proportional to the energy it absorbs. Replicating the very low dose ...

#### Physicists tune Large Hadron Collider to find 'sweet spot' in high-energy proton smasher

Apr 15, 2015

Start up of the world's largest science experiment is underway—with protons traveling in opposite directions at almost the speed of light in the deep underground tunnel called the Large Hadron Collider ...