Milky Way is 13.000 Million Years Old

Aug 18, 2004
Milky Way is 13.000 Million Years Old

Observations by an international team of astronomers with the UVES spectrometer on ESO's Very Large Telescope at the Paranal Observatory (Chile) have thrown new light on the earliest epoch of the Milky Way galaxy. The first-ever measurement of the Beryllium content in two stars in a globular cluster (NGC 6397) - pushing current astronomical technology towards the limit - has made it possible to study the early phase between the formation of the first generation of stars in the Milky Way and that of this stellar cluster. This time interval was found to amount to 200 - 300 million years.

The age of the stars in NGC 6397, as determined by means of stellar evolution models, is 13,400 ± 800 million years. Adding the two time intervals gives the age of the Milky Way, 13,600 ± 800 million years.

The currently best estimate of the age of the Universe, as deduced, e.g., from measurements of the Cosmic Microwave Background, is 13,700 million years. The new observations thus indicate that the first generation of stars in the Milky Way galaxy formed soon after the end of the ~200 million-year long "Dark Ages" that succeeded the Big Bang.

A proper understanding of the formation and evolution of the Milky Way system is crucial for our knowledge of the Universe. Nevertheless, the related observations are among the most difficult ones, even with the most powerful telescopes available, as they involve a detailed study of old, remote and mostly faint celestial objects.

Using the high-performance UVES spectrometer on the 8.2-m Kuyen telescope of ESO's Very Large Telescope at the Paranal Observatory (Chile) which is particularly sensitive to ultraviolet light, a team of ESO and Italian astronomers succeeded in obtaining the first reliable measurements of the Beryllium content in two TO-stars (denoted "A0228" and "A2111") in the globular cluster NGC 6397 (PR Photo 23b/04). Located at a distance of about 7,200 light-years in the direction of a rich stellar field in the southern constellation Ara, it is one of the two nearest stellar clusters of this type; the other is Messier 4.

The observations were done during several nights in the course of 2003. Totalling more than 10 hours of exposure on each of the 16th-magnitude stars, they pushed the VLT and UVES towards the technical limit. Reflecting on the technological progress, the leader of the team, ESO-astronomer Luca Pasquini, is elated: "Just a few years ago, any observation like this would have been impossible and just remained an astronomer's dream!"

According to the best current spallation theories, the measured amount of Beryllium must have accumulated in the course of 200 - 300 million years. Italian astronomer Daniele Galli, another member of the team, does the calculation: "So now we know that the age of the Milky Way is this much more than the age of that globular cluster - our galaxy must therefore be 13,600 ± 800 million years old. This is the first time we have obtained an independent determination of this fundamental value!".

Within the given uncertainties, this number also fits very well with the current estimate of the age of the Universe, 13,700 million years, that is the time elapsed since the Big Bang. It thus appears that the first generation of stars in the Milky Way galaxy was formed at about the time the "Dark Ages" ended, now believed to be some 200 million years after the Big Bang.

Explore further: Researchers use NASA and other data to look into the heart of a solar storm

add to favorites email to friend print save as pdf

Related Stories

Evidence for supernovas near Earth

Aug 27, 2014

Once every 50 years, more or less, a massive star explodes somewhere in the Milky Way. The resulting blast is terrifyingly powerful, pumping out more energy in a split second than the sun emits in a million ...

Witnessing the early growth of a giant

Aug 27, 2014

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble ...

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

Hubble eyes galaxy as it gets a cosmic hair ruffling

Aug 13, 2014

(Phys.org) —From objects as small as Newton's apple to those as large as a galaxy, no physical body is free from the stern bonds of gravity, as evidenced in this stunning picture captured by the Wide Field ...

Recommended for you

Spitzer telescope witnesses asteroid smashup

12 hours ago

(Phys.org) —NASA's Spitzer Space Telescope has spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the ...

Informing NASA's Asteroid Initiative: A citizen forum

13 hours ago

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

19 hours ago

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 0