Researchers discover internal compass of immune cell

Dec 14, 2006
Researchers discover internal compass of immune cell
Process by which neutrophils detect and migrate towards chemoattractants. Credit: UCSD Medical Center

Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered how neutrophils – specialized white blood cells that play key roles in inflammation and in the body's immune defense against bacteria – navigate to sites of infection and inflammation. These findings could potentially lead to new treatments for serious infections and inflammatory diseases in patients.

The research, reported in the December 15, 2006 issue of the journal Science, describes the elements of the "internal compass" that neutrophils use to detect and migrate towards chemoattractants, markers of infection and inflammation that are released from bacteria and inflamed tissues.

"These findings solve the long-standing puzzle of how neutrophils find their way and move toward sites of injury or infection in the body," said senior author Wolfgang Junger, Ph.D., adjunct professor of surgery at UCSD Medical Center.

His team set out to identify the key mechanisms of signal amplification that must occur in order for neutrophils to detect the low-level activating signals (chemoattractants) sent out by bacteria at injury sites. They found that neutrophils possess a built-in amplification system that is an integral part of the internal compass the cells use to locate the source of chemoattractants. At the core of the amplification system is the chemical adenosine triphosphate (ATP).

The chain of events necessary to direct the neutrophils toward its goal begins when ATP is released from the region of the cell surface closest to the source of chemoattractants. Next, ATP binds to a nucleotide receptor called P2Y2 on the cell surface, a step critical to position the cells in the direction of the source of chemoattractants.

Once this internal compass has been activated, ATP is converted by the cells to adenosine, which in turn activates A3 adenosine receptors concentrated at the front of cells, providing the signal to move toward the source of chemoattractants.

Lead authors Yu Chen, M.D., UCSD postgraduate researcher in surgery and Ross Corriden, UCSD graduate student in biomedical sciences, found that when ATP receptors were blocked, the cells became disoriented, while blocking A3 adenosine receptors slowed down the cell movement toward chemoattractants. The researchers also found that drugs which interfere with the amplification system impair cell migration to inflamed tissues.

"These findings are very important because they suggest that novel classes of anti-inflammatory drugs could be developed to prevent rheumatoid arthritis, inflammatory bowel diseases, asthma, and many other chronic inflammatory diseases," said Junger.

Conversely, drugs that boost these amplification systems and the internal compass could be used to coax neutrophils to migrate to infected wounds to improve wound healing.

Source: University of California - San Diego

Explore further: Scientists discover new clues to how weight loss is regulated

add to favorites email to friend print save as pdf

Related Stories

Who owns space?

13 minutes ago

The golden age of planetary exploration had voyagers navigating new sea routes to uncharted territory. These territories were then claimed in the name of the monarchs who had financed the expeditions. All ...

Asteroid 2014 SC324 zips by Earth Friday afternoon

3 minutes ago

What a roller coaster week it's been. If partial eclipses and giant sunspots aren't your thing, how about a close flyby of an Earth-approaching asteroid?  2014 SC324 was discovered on September 30 this ...

New oscillator for low-power implantable transcievers

30 minutes ago

Arash Moradi and Mohamad Sawan from Polytechnique Montreal in Canada discuss their new low-power VCO design for medical implants. This oscillator was implemented to provide the frequency deviation of frequency-shift-keying ...

Should the Japanese give nuclear power another chance?

43 minutes ago

On September 9, 2014, the Japan Times reported an increasing number of suicides coming from the survivors of the March 2011 disaster. In Minami Soma Hospital, which is located 23 km away from the power plant, ...

Recommended for you

Testing time for stem cells

1 hour ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

21 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0