Embryonic stem cells do better on bumpy nanoscale mattress

Dec 13, 2006

Nothing in the cellular world is flat. Even the flattest of basement membranes has topography; bumps, if you like, beneath the cellular mattress.

Unlike the princess kept awake by the pea, human embryonic stem (HES) cells do better when cultured on a substrate deliberately printed with nanoscale grooves and ridges, according to researchers from the University of Wisconsin–Madison.

The researchers used soft lithography to stamp polyurethane substrates with a nano- micron scale topography; a rugged cellular landscape ranging from a few billionths to a few millionths of a meter in altitude.

The HES cells in culture seemed to appreciate the bumps. A line of HES cells grown for five days on the artificial ridges and grooves kept their “stemness,” their self-renewing phenotype, far better than HES cells plated on standard flat culture surfaces, according to Daniel McFarlin, K.J. Finn, and Chris Murphy of the University of Wisconsin’s School of Veterinary Medicine, who teamed with P.F. Nealey of the University’s Department of Chemical Engineering.

Unlike stem cells derived from adult tissues, which have a limited number of cell doublings, embryonic stem cells cultured under the right conditions have the potential to divide indefinitely, without losing their pluripotent properties. But until now, HES cell cultures had a tendency to spontaneously differentiate, that is, to veer off without warning into a developmental pathway. HES cell cultures have to be closely watched to remove any of these spontaneously differentiated colonies.

Researchers have looked at surface chemistry, growth factors, and mechanical forces as factors in runaway stem cell differentiation, but topography is a new dimension for HES, say Murphy and McFarlin, and a highly promising one.

This is the first demonstration that the physical topography, using controlled feature dimensions, of cell culture surfaces influences HES cell differentiation and self-renewal, according to the researchers. For HES cells to realize their potential in clinical medicine, they would have to be cultured in great quantities and with great fidelity to their pluripotent phenotype. Fine-tuning their nano-micro topography could boost the efficiency of HES cell propagation.

Source: American Society for Cell Biology

Explore further: Protein harnesses power of 'silly walks'

Related Stories

Ears, grips and fists take on mobile phone user ID

16 hours ago

A research project has been under way to explore a biometric authentication system dubbed Bodyprint, with interesting test results. Bodyprint has been designed to detect users' biometric features using the ...

More than 2,200 confirmed dead in Nepal earthquake

16 hours ago

A powerful aftershock shook Nepal on Sunday, making buildings sway and sending panicked Kathmandu residents running into the streets a day after a massive earthquake left more than 2,200 people dead.

Nepal quake: Nearly 1,400 dead, Everest shaken (Update)

Apr 25, 2015

Tens of thousands of people were spending the night in the open under a chilly and thunderous sky after a powerful earthquake devastated Nepal on Saturday, killing nearly 1,400, collapsing modern houses and ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.