AMD and IBM Detail Early Results Using Immersion and Ultra Low-K in 45nm Chips

Dec 13, 2006

At the International Electron Device Meeting today, IBM and AMD presented papers describing the use of immersion lithography, ultra-low-K interconnect dielectrics, and multiple enhanced transistor strain techniques for application to the 45nm microprocessor process generation. AMD and IBM expect the first 45nm products using immersion lithography and ultra-low-K interconnect dielectrics to be available in mid-2008.

“As the first microprocessor manufacturers to announce the use of immersion lithography and ultra-low-K interconnect dielectrics for the 45nm technology generation, AMD and IBM continue to blaze a trail of innovation in microprocessor process technology,” said Nick Kepler, vice president of logic technology development at AMD. “Immersion lithography will allow us to deliver enhanced microprocessor design definition and manufacturing consistency, further increasing our ability to deliver industry-leading, highly sophisticated products to our customers. Ultra-low-K interconnect dielectrics will further extend our industry-leading microprocessor performance-per-watt ratio for the benefit of all of our customers. This announcement is another proof of IBM and AMD’s successful research and development collaboration.”

Current process technology uses conventional lithography, which has significant limitations in defining microprocessor designs beyond the 65nm process technology generation. Immersion lithography uses a transparent liquid to fill the space between the projection lens of the step-and-repeat lithography system and the wafer that contains hundreds of microprocessors. This significant advance in lithography provides increased depth of focus and improved image fidelity that can improve chip-level performance and manufacturing efficiency. This immersion technique will give AMD and IBM manufacturing advantages over competitors that are not able to develop a production-class immersion lithography process for the introduction of 45nm microprocessors. For example, the performance of an SRAM cell shows improvements of approximately 15 per cent due to this enhanced process capability, without resorting to more costly double-exposure techniques.

In addition, the use of porous, ultra-low-K dielectrics to reduce interconnect capacitance and wiring delay is a critical step in further improving microprocessor performance as well as lowering power dissipation. This advance is enabled through the development of an industry-leading ultra-low-K process integration that reduces the dielectric constant of the interconnect dielectric while maintaining the mechanical strength. The addition of ultra-low-K interconnect provides a 15 per cent reduction in wiring-related delay as compared to conventional low-K dielectrics.

“The introduction of immersion lithography and ultra-low-K interconnect dielectrics at 45nm is an early example of the successful transfer of technology from our ground-breaking research work at the Albany Nanotech Center to IBM’s state-of-the-art 300mm manufacturing and development line at East Fishkill, New York, as well as AMD’s state-of-the-art 300mm manufacturing line in Dresden, Germany,” said Gary Patton, vice president, technology development at IBM’s Semiconductor Research and Development Center. “The successful integration of leadership technologies with AMD and our partners demonstrates the strength of our collaborative innovation model.”

The continued enhancement of AMD and IBM’s transistor strain techniques has enabled the continued scaling of transistor performance while overcoming industry-wide, geometry-related scaling issues associated with migrating to 45nm process technologies. In spite of the increased packing density of the 45nm generation transistors, IBM and AMD have demonstrated an 80 per cent increase in p-channel transistor drive current and a 24 per cent increase in n-channel transistor drive current compared to unstrained transistors. This achievement results in the highest CMOS performance reported to date in a 45nm process technology.

IBM and AMD have been collaborating on the development of next-generation semiconductor manufacturing technologies since January 2003. In November 2005, the two companies announced an extension of their joint development efforts until 2011 covering 32nm and 22nm process technology generations.

Source: AMD

Explore further: Silicon Valley marks 50 years of Moore's Law

Related Stories

Ears, grips and fists take on mobile phone user ID

7 hours ago

A research project has been under way to explore a biometric authentication system dubbed Bodyprint, with interesting test results. Bodyprint has been designed to detect users' biometric features using the ...

More than 2,200 confirmed dead in Nepal earthquake

7 hours ago

A powerful aftershock shook Nepal on Sunday, making buildings sway and sending panicked Kathmandu residents running into the streets a day after a massive earthquake left more than 2,200 people dead.

Magnitude 6.7 aftershock hits Nepal, causes panic

8 hours ago

A powerful aftershock shook Nepal on Sunday, making buildings sway and sending panicked Kathmandu residents running into the streets a day after a massive earthquake left at least 1,900 people dead.

Nepal quake: Nearly 1,400 dead, Everest shaken (Update)

18 hours ago

Tens of thousands of people were spending the night in the open under a chilly and thunderous sky after a powerful earthquake devastated Nepal on Saturday, killing nearly 1,400, collapsing modern houses and ...

Recommended for you

The cost of staying cool when incomes heat up

54 minutes ago

The continual increase in global incomes means people are living more comfortably, including having the ability to afford air conditioning. Staying cool is good but there's a wealth of fallout. The demand ...

Facebook rolls out video calls on Messenger

2 hours ago

Facebook on Monday began rolling out video calling on its Messenger mobile application, enabling face-to-face conversations among users of the app around the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.