Mutant mouse provides insights into breast cancer

Dec 11, 2006

By discovering a mutant mouse that is highly susceptible to mammary tumors, Cornell researchers have found a novel potential link between genetic defects in DNA replication (copying) and breast cancer.

The mouse contains a mutation in a gene essential for replicating DNA in both humans and mice that increases the rate of flawed copies of genetic material, leading to mouse breast cancers.

In a paper published in Nature Genetics online (and upcoming in the Dec. 27 print issue), the Cornell geneticists report that by extensively testing hundreds of mice pedigrees, they found a mutant line of mice called Chaos3 that had a 20-fold increase in a hallmark for cancer called genomic instability -- a blanket term for an elevation in the number of mutations, chromosomal aberrations or loss of integrity of genetic information that occur when DNA replicates. While the Chaos3 mice appear normal in every way, the females are highly predisposed to mammary tumors.

"It's known that most cancers, by the time you look at them, have genomic instability in some form or another," said John Schimenti, a genetics professor in Cornell's Departments of Biomedical Sciences, and Molecular Biology and Genetics and the paper's senior author. "Our research demonstrated that genomic instability is probably leading to these cancers."

Schimenti and colleagues found that in the Chaos3 mice, the DNA codings in a gene called Mcm4 were partially impaired. The Mcm4 gene is one of six related Mcm genes that play essential roles in replication and were originally discovered at Cornell in baker's yeast (S. cerevisiae). The genes have remained largely unchanged throughout evolution and are evident in archaebacteria, yeast, mammals and more. It is unknown why the impaired Mcm4 genes in the Chaos3 mice led exclusively to breast cancer, Schimenti said.

Mcm4 is essential for DNA replication and thus cell growth, according to Schimenti. Partially impaired Mcm4 genes, however, allow Chaos3 mice to live normal lives but greatly increase the rate of faulty DNA replications and genomic instability.

"It's insidious because there is no warning that one might have this cancer predisposing allele [DNA codings at a given site] because the mice live normally," said Schimenti, who is also director of the Center for Vertebrate Genomics.

The researchers plan to study further the other Mcm genes to see if they, too, play a role in cancers.

The Mcm genes were discovered by Cornell professor of molecular biology Bik Tye, while the pathology of the mouse tumors was performed by Ana Alcaraz, a veterinarian in Cornell's Section of Anatomic Pathology in the Department of Biomedical Sciences.

Source: Cornell University

Explore further: Clues to genetics of congenital heart defects emerge from Down syndrome study

add to favorites email to friend print save as pdf

Related Stories

Russia turns back clocks to permanent Winter Time

3 hours ago

Russia on Sunday is set to turn back its clocks to winter time permanently in a move backed by President Vladimir Putin, reversing a three-year experiment with non-stop summer time that proved highly unpopular.

UN climate talks shuffle to a close in Bonn

3 hours ago

Concern was high at a perceived lack of urgency as UN climate negotiations shuffled towards a close in Bonn on Saturday with just 14 months left to finalise a new, global pact.

Microsoft beefs up security protection in Windows 10

7 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

US official: Auto safety agency under review

20 hours ago

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Recommended for you

Right environment could improve stem cell therapies

Oct 23, 2014

Stem cell therapies are being hailed as a potential cure for many major health conditions, but there is much still to learn about the highly complex environments needed to optimise these therapies, according to researchers ...

User comments : 0