Nitrogen rain makes bogs contribute to climate change

Dec 11, 2006

High levels of nitrogenous compounds can make bogs give off more carbon dioxide, thereby adding to the greenhouse effect. This has been shown by the plant ecologist Hakan Rydin in an article published this week in the Proceedings of the National Academy of Sciences.

The increasing levels of carbon dioxide in the air are leading us to expect climate change with higher temperatures in the future. The principal cause is the combustion of fossil fuels, but there are other processes that can lead to increases in carbon dioxide as well. For thousands of years, plants in peat bogs and other fens have absorbed carbon dioxide from the air for their photosynthesis, binding it in the form of layers of peat that can reach depths of 10 meters. Such binding of carbon dioxide serves as a carbon trap and can counteract the release of carbon dioxide to some extent.

“Now there are signs that indicate that nitrogenous compounds in the air make peat bogs start to give off more carbon dioxide than they bind, and that they may tip over from being a carbon trap to being a carbon source, thereby aggravating the greenhouse effect instead,” says Håkan Rydin, professor of plant ecology, who directed the study.

The amount of carbon contained in peat layers is equivalent to 40-50 percent of the total amount of carbon dioxide in the atmosphere. The most important peat-forming plants are bog mosses (NOT the same as the reindeer lichens used in advent candle settings). Bog mosses have several unique properties. They soak up water like sponges, making the environment waterlogged and low on oxygen, which counteracts their being degraded by microorganisms and leads to the accumulation of plant remains in the form of peat. Another reason peat is formed is that bog mosses produce organic substances, such as polyphenols, that make them difficult to break down. They are therefore highly deficient in nutrition and are directly impacted by the amounts of nitrogen found in precipitation as a result of air pollution.

In the present study, a network of scientists show, from samples taken from bogs in Europe with varying levels of nitrogen in the precipitation, that bog mosses growing in areas with higher levels of nitrogen form smaller amounts of polyphenols and are therefore more susceptible to degradation by microorganisms than those growing in areas with low levels of nitrogen, such as the Nordic countries. This increased degradation entails that bogs give off more carbon dioxide to the atmosphere.

They have also found that precipitation with high levels of nitrogen promotes the growth of grass and sedge, which also occur on bogs. These plants do not add to peat build-up in the same way as bog mosses. All in all, this means that bogs can aggravate the greenhouse effect in areas with high levels of nitrogen in precipitation, by both giving off more and binding less carbon dioxide.

Source: Uppsala Universitet

Explore further: Solar energy-driven process could revolutionize oil sands tailings reclamation

add to favorites email to friend print save as pdf

Related Stories

Extreme weather events fuel climate change

Aug 14, 2013

When the carbon dioxide content of the atmosphere rises, the Earth not only heats up, but extreme weather events, such as lengthy droughts, heat waves, heavy rain and violent storms, may become more frequent. ...

Salt marsh restoration could bring carbon benefits

Mar 18, 2013

Allowing farmland that's been reclaimed from the sea to flood and turn back into salt marsh could make it absorb lots of carbon from the atmosphere, a new study suggests, though the transformation will take ...

Green tires: Where the rubber meets the road

Sep 30, 2012

Most of us don't think about tires much until we either get a flat or they wear out, and then the bite of up to $1,000 or more for all four corners sure gets our attention. Most of all, we don't think of tires as having anything ...

Recommended for you

Big changes in the Sargasso Sea

9 hours ago

Over one thousand miles wide and three thousand miles long, the Sargasso Sea occupies almost two thirds of the North Atlantic Ocean. Within the sea, circling ocean currents accumulate mats of Sargassum seawee ...

Water-quality trading can reduce river pollution

9 hours ago

Allowing polluters to buy, sell or trade water-quality credits could significantly reduce pollution in river basins and estuaries faster and at lower cost than requiring the facilities to meet compliance costs on their own, ...

Managing land into the future

13 hours ago

Food production is the backbone of New Zealand's economy—and a computer modelling programme designed by a Victoria University of Wellington academic is helping ensure that farming practices here and overseas ...

User comments : 0