Evolution and the workaround

Dec 10, 2006

Living things are resourceful, which is a comforting thought unless the living thing in question is a pathogen or a cancer cell. Noxious cells excel at developing drug resistance, outwitting immune systems, and evading cellular controls. They even show an unhealthy talent for surviving internal perturbations such as mutations that affect the function of vital genes, and they do this by evolving new mechanisms to perform old tasks. Somehow the bad guys find a workaround.

That observation led Norman Pavelka, Giulia Rancati, and Rong Li, researchers at the Stowers Institute for Medical Research in Kansas City, MO, to step back and consider the basic process by which cells adapt to the loss of seemingly irreplaceable genes. The researchers reasoned that understanding how cells adapt to internal perturbations could offer insight into how pathogens and cancer cells mutate to evade the body’s defenses and resist treatment with drugs.

The Stowers researchers used the benign budding yeast Saccharomyces cerevisiae as their model organism and deleted a key cell division gene called MYO1. Surely, eliminating this important gene would shut down cell division. This seemed to be the case in the beginning, and yet as the MYO1 defective cells were cultured and subjected to consecutive rounds of selection for best growers, the yeast came up with new strategies to carry out division. When the researchers analyzed the genetic content of these evolved strains, they found that those who were best at cell division had accumulated multiple copies of many of their chromosomes.

Intriguingly, cancer cells also accumulate extra chromosomes as they become more aggressive. The theory is that these extra chromosomes provide “backup” copies of important genes, allowing the original copies to mutate in ways that help the cells survive stresses (such as drugs) that are meant to kill them.

The observation that both yeast and cancer cells evolve chromosome duplications to work around lethal stresses suggests that drugs aimed at defeating this process might be particularly effective against pathogens and cancers adept at rapid drug resistance, the researchers say.

To stay alive, you have to be both sturdy and flexible. The Stowers researchers look to these evolved yeast strains for future explanations of how the duplication of genetic information contributes to the robustness and adaptability of all living things.

Source: American Society for Cell Biology

Explore further: Adults with intellectual and developmental disabilities are much less likely to be screened for colorectal cancer

add to favorites email to friend print save as pdf

Related Stories

Ultra-small block 'M' illustrates big ideas in drug delivery

11 hours ago

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

A taxi ride to starch granules

7 hours ago

Plant scientists at ETH have discovered a specific protein that significantly influences the formation of starch in plant cells. The findings may be useful in the food and packaging industries.

Recommended for you

Cancer drug first tested in pet dogs begins human trials

3 hours ago

A new drug that prompts cancer cells to self-destruct while sparing healthy cells is now entering phase I clinical trials in humans. The drug, called PAC-1, first showed promise in the treatment of pet dogs ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.