Evolution and the workaround

Dec 10, 2006

Living things are resourceful, which is a comforting thought unless the living thing in question is a pathogen or a cancer cell. Noxious cells excel at developing drug resistance, outwitting immune systems, and evading cellular controls. They even show an unhealthy talent for surviving internal perturbations such as mutations that affect the function of vital genes, and they do this by evolving new mechanisms to perform old tasks. Somehow the bad guys find a workaround.

That observation led Norman Pavelka, Giulia Rancati, and Rong Li, researchers at the Stowers Institute for Medical Research in Kansas City, MO, to step back and consider the basic process by which cells adapt to the loss of seemingly irreplaceable genes. The researchers reasoned that understanding how cells adapt to internal perturbations could offer insight into how pathogens and cancer cells mutate to evade the body’s defenses and resist treatment with drugs.

The Stowers researchers used the benign budding yeast Saccharomyces cerevisiae as their model organism and deleted a key cell division gene called MYO1. Surely, eliminating this important gene would shut down cell division. This seemed to be the case in the beginning, and yet as the MYO1 defective cells were cultured and subjected to consecutive rounds of selection for best growers, the yeast came up with new strategies to carry out division. When the researchers analyzed the genetic content of these evolved strains, they found that those who were best at cell division had accumulated multiple copies of many of their chromosomes.

Intriguingly, cancer cells also accumulate extra chromosomes as they become more aggressive. The theory is that these extra chromosomes provide “backup” copies of important genes, allowing the original copies to mutate in ways that help the cells survive stresses (such as drugs) that are meant to kill them.

The observation that both yeast and cancer cells evolve chromosome duplications to work around lethal stresses suggests that drugs aimed at defeating this process might be particularly effective against pathogens and cancers adept at rapid drug resistance, the researchers say.

To stay alive, you have to be both sturdy and flexible. The Stowers researchers look to these evolved yeast strains for future explanations of how the duplication of genetic information contributes to the robustness and adaptability of all living things.

Source: American Society for Cell Biology

Explore further: Merck drug Keytruda effective against 3 cancers

Related Stories

New transitional stem cells discovered

Apr 16, 2015

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

Quantum dot TVs are unveiled at China tech expo

22 hours ago

At this month's China Information Technology Expo (CITE) event, a headline-maker was the launch of quantum dot televisions, by QD Vision and Konka, the consumer electronics company. QD Vision's calling card ...

Recommended for you

Merck drug Keytruda effective against 3 cancers

37 minutes ago

One of the hot new cancer immunotherapy drugs, Merck & Co.'s Keytruda, strongly benefited patients with melanoma, lung cancer and mesothelioma, according to three studies presented Sunday at the American Association for Cancer ...

DNA blood test detects lung cancer mutations

Apr 17, 2015

Cancer DNA circulating in the bloodstream of lung cancer patients can provide doctors with vital mutation information that can help optimise treatment when tumour tissue is not available, an international group of researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.