Finding an answer to Darwin's Dilemma

Dec 08, 2006

The sudden appearance of large animal fossils more than 500 million years ago – a problem that perplexed even Charles Darwin and is commonly known as "Darwin’s Dilemma" – may be due to a huge increase of oxygen in the world’s oceans, says Queen’s paleontologist Guy Narbonne, an expert in the early evolution of animals and their ecosystems.

In 2002, Dr. Narbonne and his research team found the world’s oldest complex life forms between layers of sandstone on the southeastern coast of Newfoundland. This pushed back the age of Earth’s earliest known complex life to more than 575 million years ago, soon after the melting of the massive "snowball" glaciers. New findings reported today shed light on why, after three billion years of mostly single-celled evolution, these large animals suddenly appeared in the fossil record.

In a paper published on-line in Science Express, Dr. Narbonne’s team argues that a huge increase in oxygen following the Gaskiers Glaciation 580 million years ago corresponds with the first appearance of large animal fossils on the Avalon Peninsula in Newfoundland.

Now for the first time, geochemical studies have determined the oxygen levels in the world’s oceans at the time these sediments accumulated in Avalon. "Our studies show that the oldest sediments on the Avalon Peninsula, which completely lack animal fossils, were deposited during a time when there was little or no free oxygen in the world’s oceans," says Dr. Narbonne. "Immediately after this ice age there is evidence for a huge increase in atmospheric oxygen to at least 15 per cent of modern levels, and these sediments also contain evidence of the oldest
large animal fossils."

Also on the research team are Don Canfield (University of Southern Denmark) and Simon Poulton (Newcastle University, U.K.). Geochemical studies by Drs. Canfield and Poulton included measurements of iron speciation and sulphur isotopes to determine the oxygen levels in the world’s oceans at the time these sediments accumulated in Avalon.

The close connection between the first appearance of oxygenated conditions in the world’s oceans and the first appearance of large animal fossils confirms the importance of oxygen as a trigger for the early evolution of animals, the researchers say. They hypothesize that melting glaciers increased the amount of nutrients in the ocean and led to a proliferation of single-celled organisms that liberated oxygen through photosynthesis. This began an evolutionary radiation that led to complex communities of filter-feeding animals, then mobile bilateral animals, and ultimately to the Cambrian "explosion" of skeletal animals 542 million years ago.

Source: Queen's University

Explore further: High-pitched sounds cause seizures in old cats

Related Stories

Ocean 'dead zones' a growing disaster for fish

Apr 09, 2015

Falling ocean oxygen levels due to rising temperatures and influence from human activities such as agrochemical use is an increasingly widespread problem. Considering that the sea floors have taken more than 1,000 years to recover from past eras of low ox ...

Vaccines from a reactor

Mar 02, 2015

In the event of an impending global flu pandemic, vaccine production could quickly reach its limits, as flu vaccines are still largely produced in embryonated chicken eggs. Udo Reichl, Director at the Max ...

Looking for alternatives to antibiotics

Mar 02, 2015

Bacteria that talk to one another and organize themselves into biofilms are more resistant to antibiotics. Researchers are now working to develop drugs that prevent bacteria from communicating.

Recommended for you

High-pitched sounds cause seizures in old cats

52 minutes ago

When the charity International Cat Care asked veterinary neurologists at Davies Veterinary Specialists, UK, for help with several enquiries it had received regarding cats having seizures, seemingly in response ...

Rare dune plants thrive on disturbance

1 hour ago

Beginning in the 1880s, coastal dunes in the United States were planted with European beachgrass (Ammophila arenaria) in an attempt to hold the sand in place and prevent it from migrating. The grass did th ...

How an RNA gene silences a whole chromosome

3 hours ago

Researchers at Caltech have discovered how an abundant class of RNA genes, called long non-coding RNAs (lncRNAs, pronounced link RNAs) can regulate key genes. By studying an important lncRNA, called Xist, ...

Single cells seen in unprecedented detail

5 hours ago

Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.